Interagency Coordinating Committee on the Validation of Alternative Methods

Machine Learning Models: Regulatory Application, Acceptance, and Implementation

UNITED STATES

Advancing Alternatives to Animal Testing

Nicole C. Kleinstreuer

NICEATM Deputy Director

ICCVAM CoP 23rd January, 2018

Agency for Toxic Substances and Disease Registry • Consumer Product Safety Commission • Department of Agriculture Department of Defense • Department of Energy • Department of the Interior • Department of Transportation Environmental Protection Agency • Food and Drug Administration • National Institute for Occupational Safety and Health National Institutes of Health • National Cancer Institute • National Institute of Environmental Health Sciences National Institute of Standards and Technology • National Library of Medicine • Occupational Safety and Health Administration

Outline

- Regulatory Needs & Challenges
- Current and Future Applications:
 - QSAR models (EPA, FDA)
 - TSCA Prioritization
 - Endocrine: CERAPP/CoMPARA
 - Skin Sensitization: Defined Approaches
 - Acute Oral Toxicity: Predictive Models

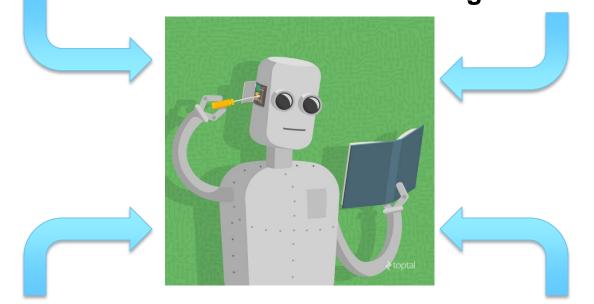
Environmental Chemical Disease Contributions

- Pesticides
 - Cancer, neurodegenerative diseases, thyroid
- Consumer products
 - Neurological, developmental, systemic
- Air pollutants
 - Childhood ADHD, autism, allergic asthma
- Drinking water contaminants
 - Systemic effects, cancer, neurological
- Endocrine Disruptors
 - Developmental impairment, decreased fertility, cancer
-and many others.....

Chemicals >> Data

- 80+ million substances synthetized
- 140,000 chemicals in commerce (plus mixtures, natural products and metabolites)

APPROVED


• Less than 10% tested

NOT TESTE

UNITED STATES ICCVAM Advancing Aternatives to Animal Testing

Curated Legacy Data e.g. REACH, ToxRefDB, ICE

High-Throughput Screening e.g. ToxCast, Tox21

Omics techologies

e.g. transcriptomics, metabolomics, exposomics

High-Content Imaging e.g. EuToxRisk

Current Regulatory Use of ML: Structure Based Models

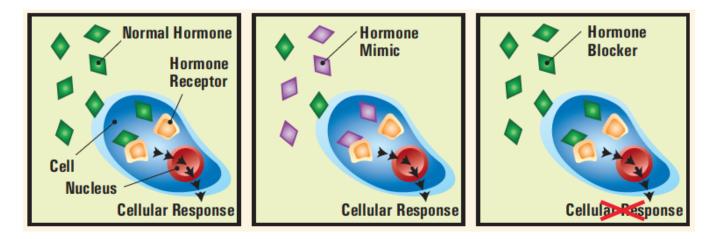
- EPA/OPPT: Predictive Methods to Assess Hazard under TSCA
 - EcoSAR, OncoLogic, EPISuite

- FDA/CDER, CDRH: Genotoxicity and Carcinogenicity
 - Bacterial mutagenicity (expert-rule based & statistical)

EPA/NCCT Decision Support Tools Deliver Data and Models

Comptox Chemistry Dashboard

CompTon Databased (F. ×	ToxCast Dashboard	d Q C E We Vert
Nettors://comptox.epa.gov/dashboard/	Overset arm: Average Overset arm: Over	
← Data Delive	ery Tools ————	Internal Beta Workflow Management Tool Rusty Thomas, EPA/NCCT


RapidTox: Prioritization Workflow

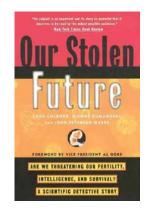
RapidTox Prioritization Workflow × RapidTo	ox: Bisphenol A 🛛 🗙 🕇 🕂				90% C Q Search
Google Scholar 🛞 RapidTox Report Index 🕷	W Washington Post: Bre., 🙃 The Nev	v York Times 🥼 nhnMvAdmin 🖌	My Drive - Google Drive 😣	Home - PubMed - NCBI 🚱	
apidTox Prioritiza	· · ·				
Chemical List:	Components Weighting F	actors In Vivo Data Phy	ysChem Data ER Data	AR Data ER QSA	AR Data Hazard Prioritizati
TSCA	Exposure Prioritization O	verall Prioritization			
OPP Inerts	Check All Unchec	k All			
To run prioritization, select the chemical set, the allowable data	Human Health				
domains, and update the weights. Then select the Recalculate button	Acute Subchror	nic Chronic DevTox	ReproTox Cancer	Mutagenicity Neur	otox Systemic Tox Model
and go to the prioritization tab. You	🖉 In vivo 🖉 In vivo	🔽 In vivo 🖉 In vivo	🔽 In vivo 📝 In vivo	🔽 In vivo 🔍 In	vivo 👿 Martin model
can then sort by the different prioritization types.	🖉 QSAR 🛛 🖉 QSAF	R 🖉 QSAR 📝 QSAR	QSAR QSAR	🔽 QSAR 🛛 🖉 Q	SAR 🛛 Pradeep model
Recalculate					🖉 GenRA model
≵ Export Table					ToxCast IVIVE
	Endocrine				
	Estrogen Agonist	Estrogen Antagonist	Androgen Agonist	Androgen Agonist	
	In vitro	In vitro	In vitro	In vitro	
	Q SAR	V QSAR	🔽 QSAR	QSAR	
	Ecological				
	Fish Acute Tox	Crustacea Acute Tox	Algae Tox	Fish ReproTox	
	In vivo	In vivo	QSAR	🔽 QSAR	
	QSAR	🖉 QSAR			

Rusty Thomas, EPA/NCCT

Environmental Endocrine Disruptors

Reviews & Commentaries • Colborn et al.

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans


Theo Colborn,¹ Frederick S. vom Saal,² and Ana M. Soto³

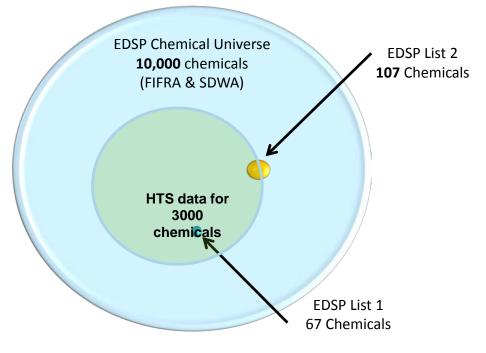
¹W. Alton Jones Foundation and World Wildlife Fund, Washington, DC, 20037 USA; ²Division of Biological Sciences and John M. Dalton Research Center, University of Missouri, Columbia, MO 65211 USA; ³Department of Anatomy and Cellular Biology, Tufts University, Boston, MA 02111 USA

1993, Environmental Health Perspectives

Legislative Mandates:

1996 Federal Food, Drug and Cosmetic Act 1996 Safe Drinking Water Act Amendments

U.S. EPA EDSP


Evolution of the Endocrine Disruptor Screening Program

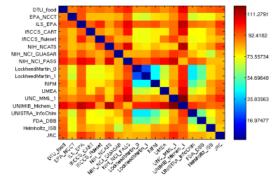
EDSP Tier 1 Testing: for the purposes of <u>prioritization</u> and <u>screening</u>, identify chemicals with the potential to disrupt estrogen, androgen, or thyroid hormone receptor signaling.

UNITED STATE

Mismatch between resources needed for EDSP Tier 1 testing and the number of chemicals to be tested

- ~\$1M per chemical for Tier 1
- 11 low-throughput & animal tests

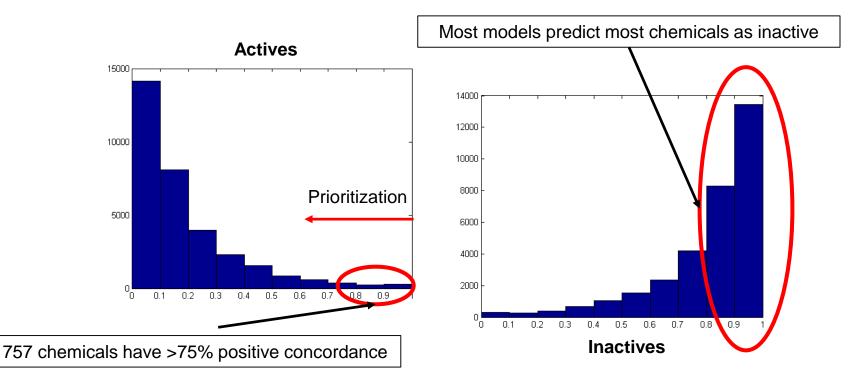
New Approach: EDSP + Tox21 = EDSP21


- Pathway-based predictive models (HTS in vitro assays)
- Validate to replace selected Tier 1 screening assays
- Train QSAR models to prioritize chemical universe

ER/AR QSAR Models

- Training set (ToxCast): 1677 chemical structures
- CERAPP: Global collaborative project for ER
 - 17 international groups participated
 - Individual and consensus models
 - Mansouri et al. 2016 EHP
- Prediction Set (EDSP):

UNITED STATE


- 32,464 chemical structures

Correlation matrix of the CERAPP continuous ER models predictions

- 5-10% predicted to be ER-active: Prioritize for further testing
- COMPARA: Global collaborative project for AR
 - 34 international groups participating
 - Mansouri et al. 2018 in prep

Environ Health Perspect; DOI:10.1289/ehp.1510267

CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

Kamel Mansouri,^{1,2} Ahmed Abdelaziz,³ Aleksandra Rybacka,⁴ Alessandra Roncaglioni,⁵ Alexander Tropsha,⁶ Alexandre Varnek,⁷ Alexey Zakharov,⁸ Andrew Worth,⁹ Ann M. Richard,¹ Christopher M. Grulke,¹ Daniela Trisciuzzi,¹⁰ Denis Fourches,⁶ Denes Honorth, 7 Emilio Bonfonetti, 5 Europea Muratav,⁶ Europea Paul Modelau, 11 Erenessea Criscoi, 12 Ciucenae E. Magniterdi, 10

CERAPP: Only a small fraction of chemicals are prioritized for further testing

Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267

Kamel Mansouri, Scitovation

Regulatory Use

US Government Information

One stop source for US Government Information

HOME	CONSUMER	DEFENSE & INTER			EDUCATION &	
FAMILY, HO	DME, & COMMUNITY	HEALTH	MONEY	PUBLIC SAF	ETY & LAW	REFERENCE &

SCIENCE & TECHNOLOGY ABOUT

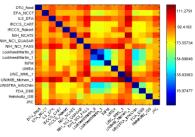
EDSP Prioritization: Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) (SOT)

Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and

EDSP dashboard: http://actor.epa.gov/edsp21/

\$EPA US EN	vironmental Protection Agency		Esp	xañol	中文: 繁體版	I	中文:简体颜 Tiếng Việt	1 I	한국아
Learn the Issues	Science & Technology	Laws & Regulations	About EPA				Search EPA.gov		٩
Related Topics:	Safer Chemicals Res	earch					Contact Us	Sh	are

Safer Chemicals Research Update June 2016


US EPA's Office of Research and Development provides quarterly updates, highlights, events and news about its chemical safety research. This is the June 2016 edition.

You will need Adobe Reader to view some of the files on this page. See EPA's About PDF page to learn more.

June 2016 CSS Pathways News Anticipating Impacts of Chemicals (PDF) (13 pp, 1

Consensus Modeling: Powering Prediction Through Collaboration

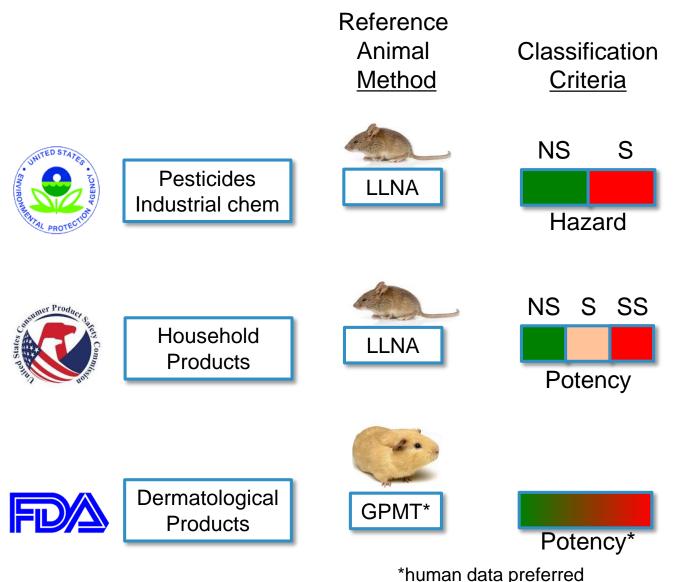
Predictive computational models can efficiently help us prioritize thousands of chemicals for additional testing and evaluation. CSS scientists Kamel Mansouri and Richard Judson, from the U.S. EPA's National Center for Computational Toxicology (NCCT), led a large-scale modeling project called the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). CERAPP demonstrated the efficacy of using computational models with high-throughput screening (HTS) data to predict potential estrogen receptor (ER) activity of over 32,000 chemicals. This international collaborative effort (17 research groups from the United States and Europe) used both quantitative structure-activity relationship models and docking approaches to evaluate binding. agonist and antagonist activity of chemicals. A total of 48 models were developed. Each model was evaluated and weighed for its predictive accuracy using ToxCast and

EDSP21 Dashboard Endocrine Disruption Screening Program for the 21st Century al Protection nemical Summary Public Information Bioactivity Summary Bioactivity High-Throughput Exposure Assay Definitions Chemical Structure and Data DSSTOX GSID 29889 CASEN 989-51-5 CASRN Type Single Compound (-)-Epigallocatechin gallate Name SMILES OC1=CC(0)=C2C[C@@H](OC(=0)C3=CC(0)=C(0)C(0)=C3)[C@H](OC InChi InChl=1S/C22H18O11/c23-10-5-12(24)11-7-18(33-22(31)9-3-15(27)20(30) WMBWREPU//VBILR-WIYYLYMNSA-N InChi Key Molecular Wt. 458.37 Chemical Formula C22H18O11 0 Cytotoxicity Limit (uM) Chemical Type Organic Chiral/Stereo dbl/Stereo

Kamel Mansouri, Scitovation

Skin Sensitization

"Allergic Contact Dermatitis"



Accounts for 10-15% of all occupational disease (Anderson et al. 2010)

Major testing requirement for cosmetics, pesticides, industrial chemicals, etc.

U.S. Agency Requirements/Considerations

Accuracy Against Human Clinical Data (~150 chems)

LLNAGPMT / BuehlerImage: Grad stateImage: Grad stateHazardPotency72%-82%54% - 60%-72%-72%

Reproducibility of Multiple Tests (~100 chems)

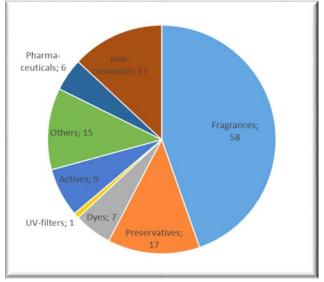
 Hazard
 Potency

 ~78%
 ~62%

 ICCVAM. 1999. NIH Publication No. 99-4494

 ICCVAM. 2010. NIH Publication No. 11-7709

 Urbisch et al. 2015. Reg Tox Pharm 71:337-351.


 Dumont et al. 2016. Tox In Vitro 34: 220-228

Hoffmann et al. 2018 Crit Rev Tox in press

Global Skin Sensitization Project

- Objective: analysis of available non-animal defined approaches (DAs)
- Collaboration with Cosmetics Europe
 - 128 substance dataset
 - LLNA (mouse) and human data
 - Curation/generation of
 - in vitro cell-based data that maps to AOP
 - in silico computer predictions, chemical structural features & properties

Spectrum of 128 substances

- Analyze non-animal DAs in an open source and transparent way
- Evaluate performance against the LLNA and human hazard/potency categories

Kleinstreuer et al. 2018 Crit Rev Tox in press

Research article

Received: 13 October 2016,

Revised: 26 October 2016.

Applied Toxicology

Published online in Wiley Online Library

Accepted: 21 June 2016

(wileyonlinelibrary.com) DOI 10.1002/jat.3424

Prediction of skin sensitization potency using machine learning approaches

Qingda Zang^a, Michael Paris^a, David M. Lehmann^b, Shannon Bell^a,

Nicole Kleinstreuer Warren Casey^c and

ABSTRACT: The replacement of agencies that use data from such out using animal data have been classified into potency categorie node assay (LLNA) and human o

Research	article
----------	---------

Received: 16 February 2016, Revised: 21 June 2016,

(wileyonlinelibrary.com) DOI 10.1002/jat.3366

Accepted: 1 November 2016

Multivariate models for prediction of human skin sensitization hazard

Judy Strickland^a*, Qingda Zang^a, Michael Paris^a, David M. Lehmann^b, David Allen^a, Neepa Choksi^a, Joanna Matheson^d, Abigail Jacobs^e, Warren Casey^c and Nicole Kleinstreuer^c

ABSTRACT: One of the Interagency Coordinating Committee on the Va the development and evaluation of non-animal approaches to ident events necessary to produce skin sensitization suggests that no single imal tests. ICCVAM is evaluating an integrated approach to testing an

NITED S

Applied Toxicology

Research article

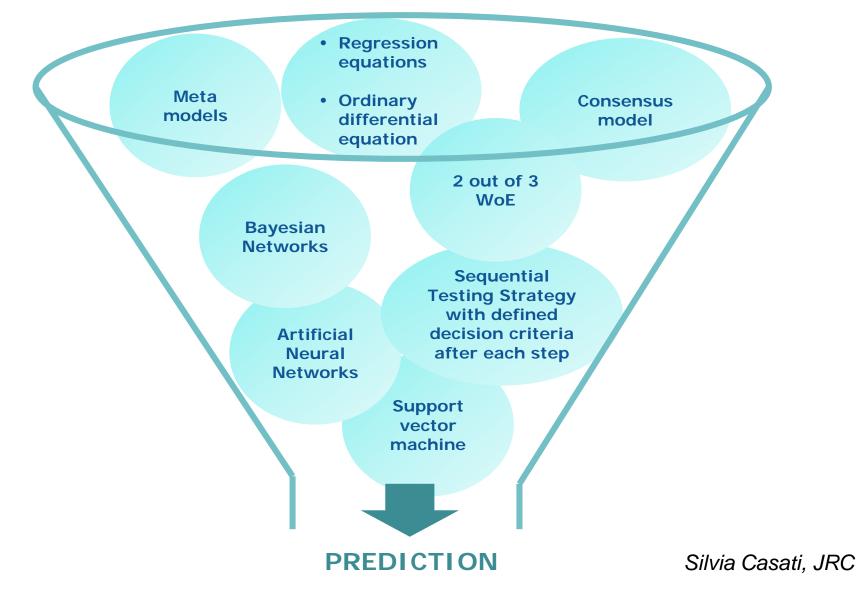
Received: 9 October 2015, Revised: 10 November 2015,

Applied Toxicology

Published online in Wiley Online Library

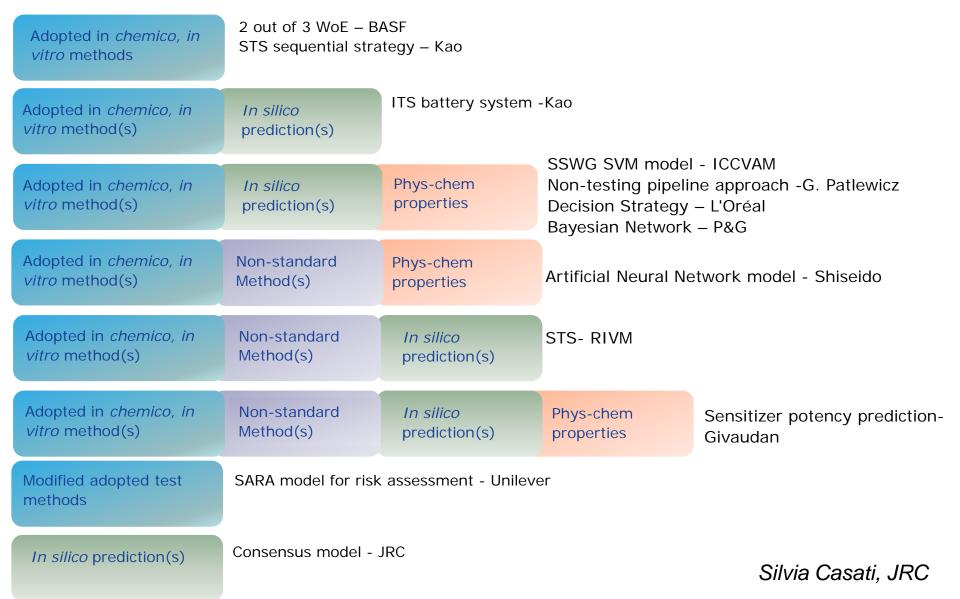
Accepted: 2 December 2015 Published online in Wiley Online Library: 6 February 2016

(wileyonlinelibrary.com) DOI 10.1002/jat.3281


Integrated decision strategies for skin sensitization hazard

Judy Strickland^a, Qingda Zang^a, Nicole Kleinstreuer^a, Michael Paris^a, David M. Lehmann^b, Neepa Choksi^a, Joanna Matheson^c, Abigail Jacobs^d, Anna Lowit^e, David Allen^a and Warren Casey^f*

ABSTRACT: One of the top priorities of the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) is the identification and evaluation of non-animal alternatives for skin sensitization testing. Although skin sensitization is a complex process, the key biological events of the process have been well characterized in an adverse outcome pathway (AOP) proposed by the Organisation for Economic Co-operation and Development (OECD). Accordingly, ICCVAM is working to develop



Different Modeling Approaches

Types of Information Sources

Defined Approach Evaluation

Most non-animal defined approaches evaluated so far perform **better** than the LLNA at predicting human skin sensitization hazard and potency.

(And when compared to the LLNA, are equivalent in performance to the LLNA at predicting itself.)

International Harmonization

- OECD proposal (SPSF) submitted November 2016
 - Co-led by U.S., EU, and Canada
 - Create an international performance based test guideline for nonanimal defined approaches to skin sensitization testing
 - Achieve widespread replacement of mouse test
- National coordinators (WNT) voted unanimously to include the project in OECD workplan, April 2017
- Special session of the WNT met in December 2017 to review progress and discuss next steps
 - Achieved consensus on evaluation framework for consideration and assessment of DAs

Rat oral acute toxicity: LD50 Database

 Multiple existing resources containing <u>rat oral</u> acute toxicity LD50 data were mined and merged

Data source	Number of LD50 values	Number of unique chemicals	
ECHA ChemProp	5,533	2,136	
NLM HSDB	3,981	2,205	
JRC AcutoxBase	637	138	
NLM ChemIDplus	13,072	12,977	Total: 34,511 LD50 values
NICEATM PAI	364	293	16,307 chemicals
OECD eChemPortal	10,119	2,290	Identify unique data in mg/kg

21,210 LD50 values 15,698 chemicals

 LD50 data comprised point estimates as well as limit tests

Agnes Karmaus, ILS/NICEATM

Development of Predictive Models for Acute Oral Toxicity

- International modeling community invited to build models to predict acute oral systemic toxicity
- ICCVAM agencies informed model endpoints
- Training and test data derived from large dataset compiled by NICEATM and EPA/NCCT
 - 11,992 QSAR-ready structures (75% training, 25% test)
 - Quantitative & qualitative evaluation
 - Models will be integrated to yield consensus predictions

https://ntp.niehs.nih.gov/go/tox-models

Endpoints to be Modeled

Participants are asked to develop models for any/all of the following endpoints identified based on regulatory needs provided by ICCVAM agencies:

- 1. Very toxic (< 50 mg/kg vs. all others)
- 2. Nontoxic (>2000 mg/kg vs. all others)
- 3. LD50 point estimate
- 4. EPA hazard categories (n=4)
- 5. GHS hazard categories (n=5)*

*GHS categories 5 and "not classified" are combined into one category

Modeling Approach

- Modelers are encouraged to consider different modeling approaches
 - Machine learning, global/local, hybrid/consensus models, etc.
- Models could include any variety of data inputs:
 - Chemical features/structure classes, physiochemical properties, product use categories, production volumes, in vitro data (measured or predicted), etc.

Evaluation Criteria

The OECD QSAR validation principles to be considered as guidance:

- **1. A defined endpoint**
- 2. An unambiguous algorithm
- 3. A defined domain of applicability
- 4. Appropriate measures of goodness-of-fit, robustness and predictivity
- 5. Mechanistic interpretation, if possible

Timeline

- November 17, 2017: Release of Training Data to the public.
- December 15, 2017: Release of Prediction Data to the public.
- February 9, 2018: Deadline for submission of model results and documentation to NICEATM.
- March 9, 2018: Organizing Committee finalizes selection of models to be invited for platform presentations and notifications are sent to presenters.
- April 11-12, 2018: Predictive Models for Acute Oral Systemic Toxicity Workshop, NIH Natcher Conference Center, Bethesda, MA.

https://ntp.niehs.nih.gov/go/tox-models

Summary

- Toxicology data can be synthesized and modeled effectively using machine learning approaches.
 - Also: exposure, use case, systematic review, etc.
- Machine learning models (i.e. QSARs) have already achieved limited acceptance in the regulatory space.
- Additional education, training, and communication will facilitate more widespread adoption.

https://ntp.niehs.nih.gov/pubhealth/evalatm/natl-strategy/

Acknowledgments

- Gino Scarano
- Jennifer Goode
- Paul Browne
- Agnes Karmaus
- Grace Patlewicz
- Rusty Thomas
- Kamel Mansouri
- Richard Judson
- Sebastian Hoffmann
- Silvia Casati

- ICCVAM partners
 EURL ECVAM/JRC
- Cosmetics Europe STTF Health Canada
- ILS/NICEATM

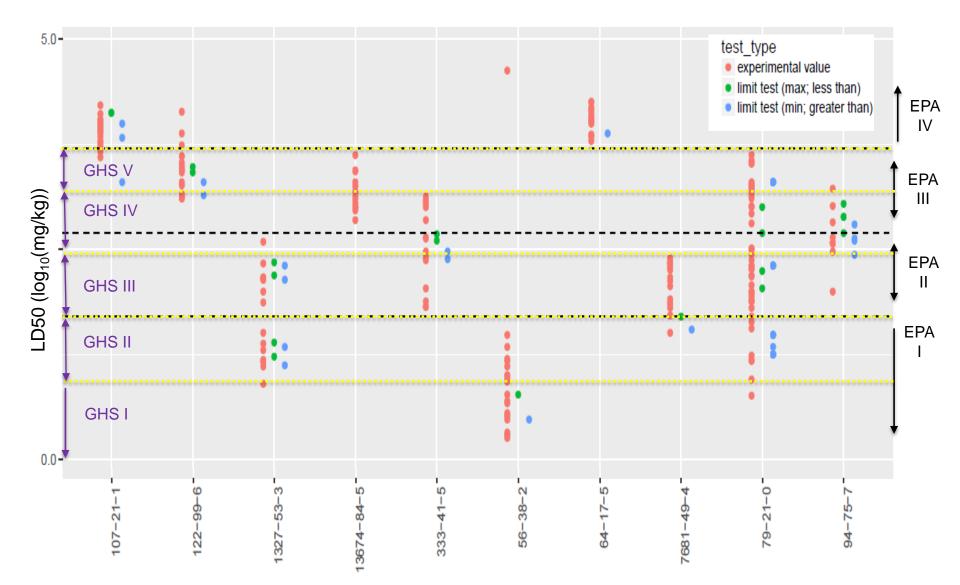
• ICATM partners

Extra Slides

Previous CoP webinars

- Incorporating Chemical Information: Resources, Limitations, and Characterizing the Domain of Applicability for 21st Century Toxicity Testing (January 24, 2017)
- <u>https://ntp.niehs.nih.gov/go/commprac-2017</u>
- Fundamentals of Using Quantitative Structure-Activity Relationship Models and Read-across Techniques in Predictive Toxicology (January 26, 2016)
- <u>https://ntp.niehs.nih.gov/go/commprac-2016</u>

Big biological data in toxicology


Name	General Information	Data description
PubChem	Over 50 million compounds, over 700,000 bioassays, over 13 billion data points	Toxicity, genomics and literature data
ChEMBL	Over 600,000 compounds, 3.3 million bioassay readout data	Literature toxicity data
ACToR	The toxicity results from 100 various data resources	Both in vitro and in vivo toxicity data
ToxNET	Over 50,000 environmental compounds from 16 different resources	Both in vitro and in vivo toxicity data
SEURAT	Over 5,500 cosmetic-type compounds in the current COSMOS database web portal	Animal toxicity data
REACH	816,048 studies for 9,800 substances and 3,600 study types	Data submitted in EU chemical legislation, made machine-readable by Luechtefeld et al. 2016a (this issue)
CTD	Over 13,000 compounds, over 32,000 genes, over 6000 diseases	Compound, gene and disease relationships
CEBS	About 10,000 toxicity bioassays from various sources	Gene expression data
DrugMatrix	About 600 drug molecules and 10,000 genes	Gene expression data
Cmap	About 1,300 compounds and 7,000 genes	Gene expression data

Zhu et al. 2016 ALTEX

UNITED STATES

Advancing Alternatives

Impact of Variability on Hazard Classification

