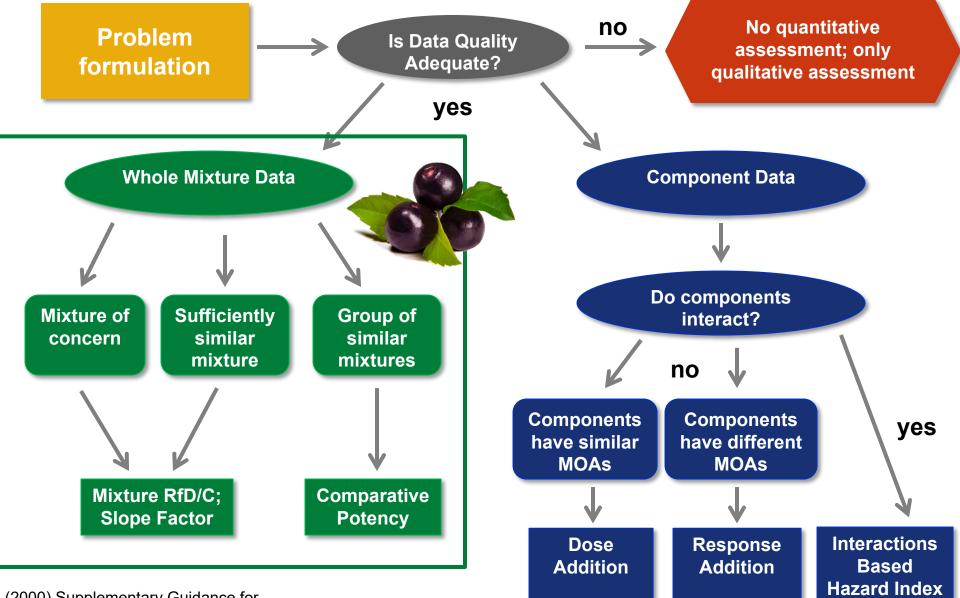


Applying In vitro Approaches to Understand Complex Mixtures in Assessing Botanical Safety


Cynthia V. Rider, Ph.D. Toxicology Branch National Institute of Environmental Health Sciences

January 26, 2021

Mixtures risk assessment framework

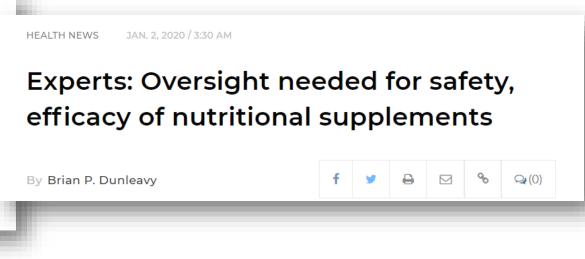
Adapted from U.S. EPA (2000) Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures

Current research at NTP

Widespread exposure + relatively high doses

- Approximately 18% of adults in the U.S. (~40 million people) used nonvitamin, nonmineral dietary supplements in the past 12 months according to the 2012 National Health Interview Survey
- US consumers spent \$9.6 billion on botanical dietary supplements in 2019
- Recommended doses can be in the range of 100s 1000s mg per day

From: Clarke et al., 2015, Trends in the Use of Complementary Health Approaches Among Adults: United States, 2002-2012. Smith et al., 2020. US Sales of Herbal Supplements Increase by 8.6% in 2019. *HerbalGram*, 127, 54-69.



Aloe vera

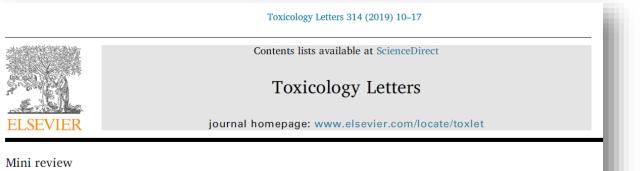
- NTP evaluates substances that are of public health concern
- There is little safety data on most botanicals
- Public concern about the quality and integrity of botanicals available in the marketplace
- NTP has received a number of nominations to study botanical dietary supplements
 - National Cancer Institute (9), NIEHS (5), Private Individuals (3), FDA (2)

Botanical Supplements Come From Nature, But That Doesn't Mean They're Safe.

Manufacturers of supplements aren't required to demonstrate to the government their products are effective or safe.

Author: Tanya Rivera Published: 4:37 PM EDT November 1, 2019 Updated: 6:08 PM EDT November 1, 2019

1994 Dietary Supplement Health and Education Act


- Amends the FD&C created a regulatory framework for dietary supplements
 - Intent: Balance consumer access and consumer protection
 - Defines dietary supplements as foods and excludes them from consideration as food additives
 - Puts the burden of proof for risk on FDA (i.e., FDA has to prove that a dietary supplement is not safe)
 - Clarifies labeling requirements
 - Requires new dietary supplement ingredients to be registered with the FDA
 - Specifies Good Manufacturing Practices for dietary supplements
 - Created the Office of Dietary Supplements at NIH

From: Abdel-Rahman, 2011, Toxicological Sciences 132(2): 333-348. Dietary Supplement Health and Education Act of 1994. Public Law 103–417, 108 Stat. 4325-4335; October 25 1994.

History of safe use

Development of a consensus approach for botanical safety evaluation – A roundtable report

Corrado L. Galli^a, Nigel J. Walker^b, Nicholas H. Oberlies^c, Amy L. Roe^d, James Edwards^e, Suzanne Fitzpatrick^f, James C. Griffiths^g, A. Wallace Hayes^h, Catherine Mahonyⁱ, Daniel S. Marsman^d, Lara O'Keeffe^{i,*}

- Consensus statements on history of safe use:
 - The safety of a botanical cannot be judged based solely on a history of food use unless it can be demonstrated that a comparable composition is ingested on a regular basis across broad geographic and demographic populations
 - In the assessment of a botanical, it is misleading to assume that a history of human use addresses all aspects of safety

Completed

- Aloe vera nondecolorized
 whole leaf extract
- Bitter orange extract
- Ephedra (ma huang)
- Ginseng root extract
- Ginkgo biloba extract
- Goldenseal root powder
- Green tea extract
- Gum guggul extract
- Kava kava extract
- Milk thistle extract
- Senna

<u>Ongoing</u>

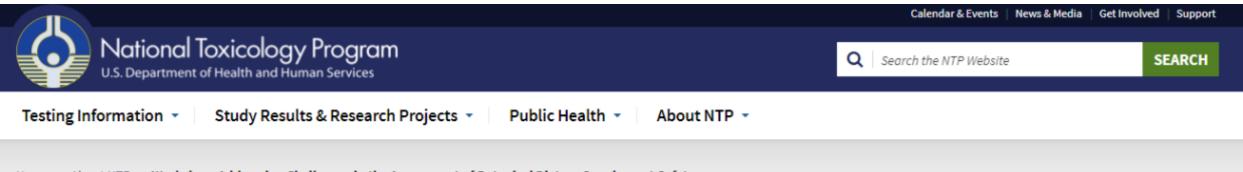
- Black cohosh extract
- Dong quai (root powder or extract)
- Echinacea purpurea extract
- Garcinia cambogia
- Usnea lichen
- Valerian root (

- Identify knowledge gaps
 - Specific concern: Ephedra and cardiotoxicity
 - General: Lack of toxicity and carcinogenicity data
- Test article selection
- Study design (general)

- Animals: Male and female B6C3F1/N mice and Sprague Dawley rats (previously F344)
- Exposure duration: 2-week, 3-month, 2-year
- Dosing paradigm: typically oral gavage for botanical dietary supplements
- Endpoints: clinical chemistry, hematology, genotoxicity, sperm motility and vaginal cytology, histopathology

Botanical	Male Rats	Female Rats	Male Mice	Female Mice			
Aloe vera	Clear	Clear	No	No			
Ginkgo biloba	Some	Some	Clear	Clear			
Ginseng	No	No	No	No			
Goldenseal	Clear	Clear	Some	No			
Green tea	No	No	No	No			
Kava Kava	Equivocal	No	Clear	Clear			
Milk thistle	No	No	No	No			
Senna	Not tested	Not tested	No	No			
Bitter orange	Increased heart rate and blood pressure						
Ephedra	Cardiotoxicity						

Green tea *Camellia sinensis*



Sources of variation

Exposure	Finished product	Processing	Source material	
Dose (use pattern) Length of dosing Life-stage Disease-state Nutritional status Background genetics Co-exposures	Manufacturing process* Excipients Combination with other botanicals Adulteration Contamination Storage/shipping conditions	Extraction process* Solvents Adulteration Contamination Storage/shipping conditions	Plant part (aerial, root, whole plant, leaf, seed) Climate Soil conditions Season Plant maturity Contaminants (mold, pesticides, metals) Co-harvested materials (other plants, soil) Adulteration	
	*Proprietary			No. A

April 26-27, 2016, NIH Campus, Bethesda, MD

Home » About NTP » Workshop: Addressing Challenges in the Assessment of Botanical Dietary Supplement Safety

2016

Workshop: Addressing Challenges in the Assessment of Botanical Dietary Supplement Safety

April 26-27, 2016 9 a.m. - 5 p.m. EDT Location: Lister Hill Auditorium National Institutes of Health (NIH), Bethesda, Maryland

http://ntp.niehs.nih.gov/about/presscenter/events/2016/index.html

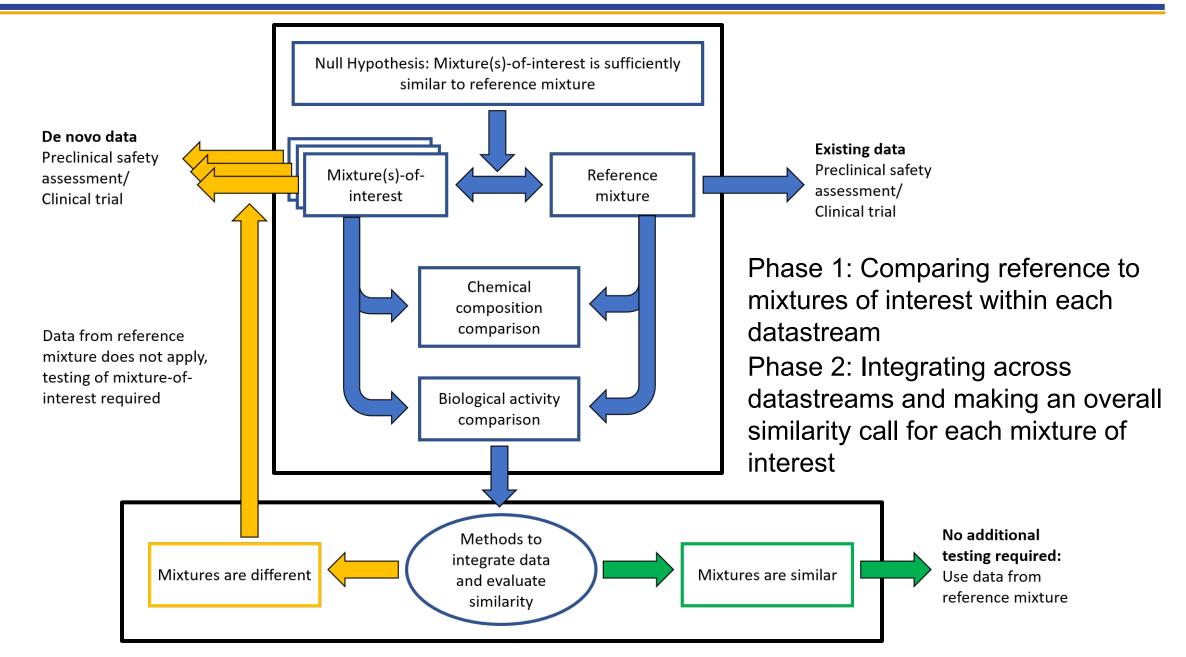
Identifying active constituents

Hazard characterization Product development Regulation

Comparing across botanicals Understanding ADME of botanicals

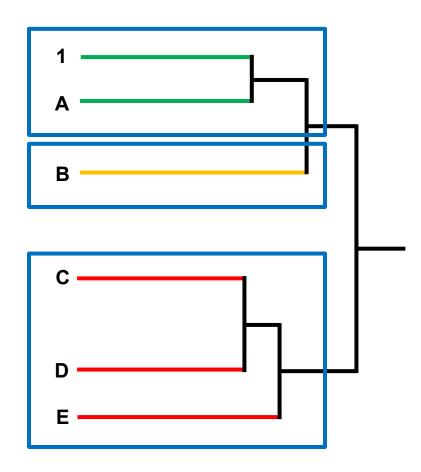
Sufficient similarity

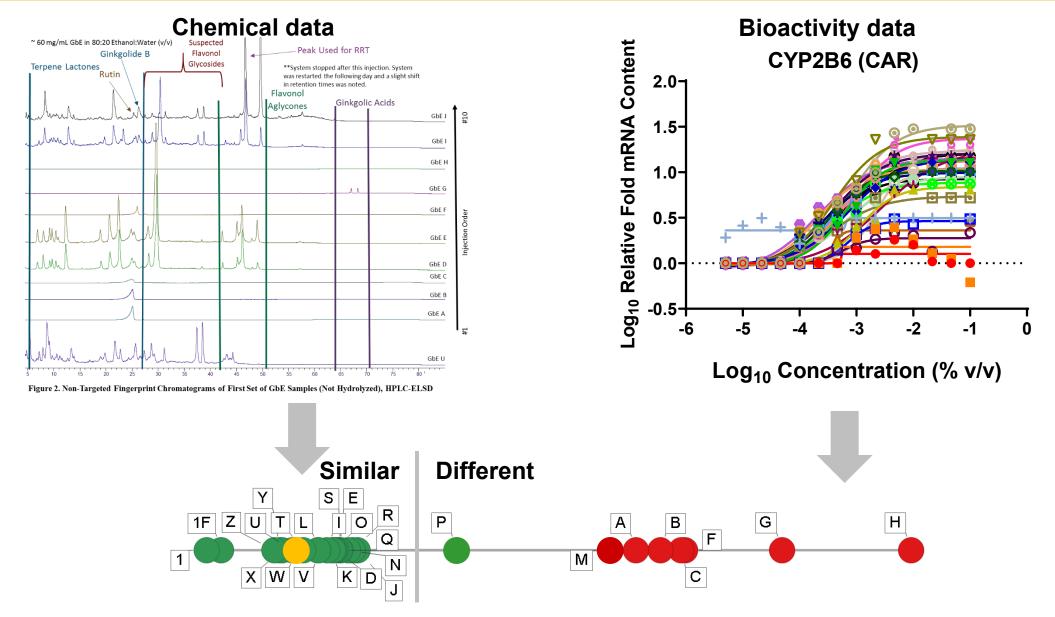
Sufficient similarity = phytoequivalence


Two mixtures are similar enough that data from one of the mixtures (*reference mixture*) is transferable to the other (*mixture of interest*).

Why is this important?

There are thousands of products in the marketplace and we are not going to test all of them





Simple rules

- 1. Generate data (any kind of data chemistry, *in vitro*, *in vivo*) on the reference and mixtures of interest
- 2. Multivariate statistical approaches to analyze large datasets (PCA, hierarchical clustering)
- 3. Similarity judgment
 - a) Mixtures in the same group as the reference are considered "similar"
 - b) Mixtures in the most different group are considered "different"
 - c) Mixtures in neither the most similar or the most different groups are considered "maybe similar"

Catlin et al., (2018). How similar is similar enough? A sufficient similarity case study with Ginkgo biloba extract. Food Chem Toxicol. 118: 328-339.

Natural variation, contamination, and adulteration

NIH National Institutes of Health Turning Discovery Into Health

Dietary Supplement Label Database

Home Search About Contact Us Help Menu

Ingredient - Black Cohosh

424 product(s) contain the ingredient "Black Cohosh"

on Adulteration of Actaea racemosa

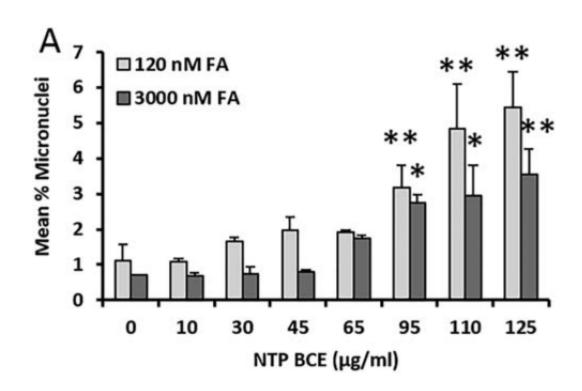
By Stefan Gafner, PhD* American Botanical Council, PO Box 144345, Austin, TX 78723 *Corresponding author: <u>email</u>

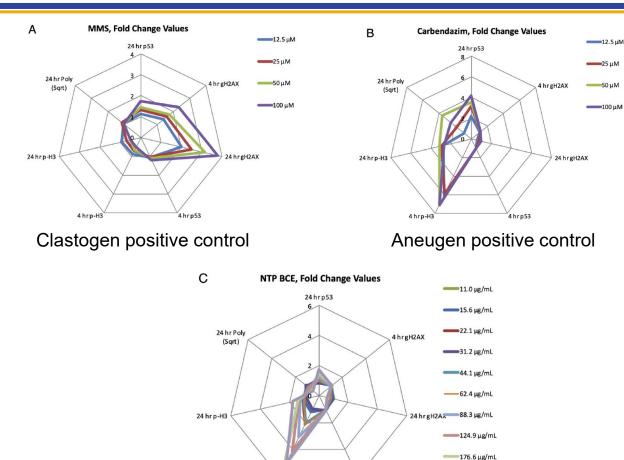
Black cohosh Actaea racemosa

Yellow cohosh Actaea podocarpa

Red cohosh *Actaea rubra*

Chinese cohosh Sheng ma Actaea dahurica




http://bonap.net/Napa/TaxonMaps/Genus/County/Actaea

Black cohosh (Actaea racemosa)

In vitro assessment

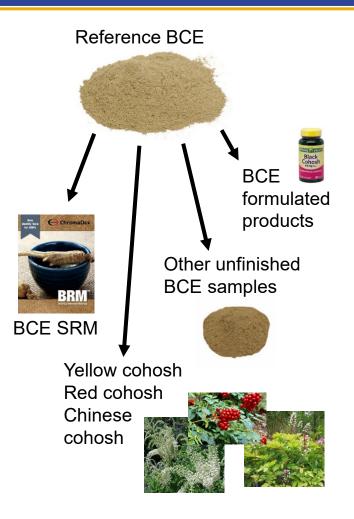
Black Cohosh Extracts and Powders Induce Micronuclei, a Biomarker of Genetic Damage, in Human Cells

Stephanie L. Smith-Roe,¹* Carol D. Swartz,² Kim G. Shepard,² Steven M. Bryce,³ Stephen D. Dertinger,³ Suramya Waidyanatha,¹ Grace E. Kissling,¹ Scott S. Auerbach,¹ and Kristine L. Witt¹

Environmental and Molecular Mutagenesis 59:416–426 (2018)

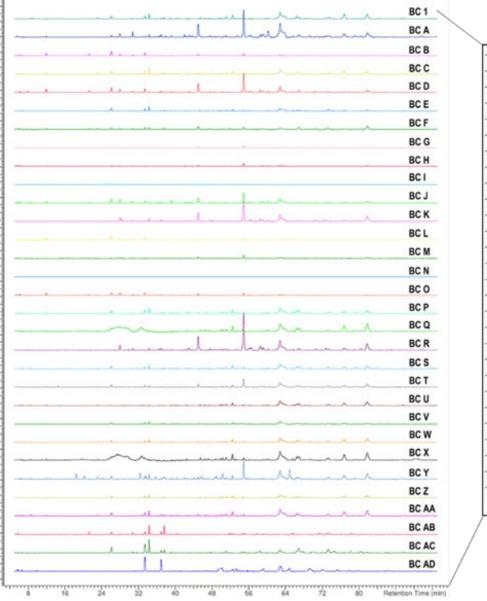
Evidence for an Aneugenic Mechanism of Action for Micronucleus Induction by Black Cohosh Extract

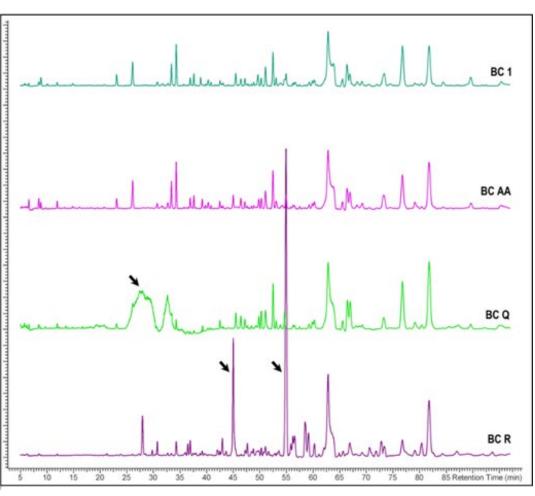
Derek T. Bernacki,¹ Steven M. Bryce,¹ Jeffrey C. Bemis,¹ Stephen D. Dertinger,¹ Kristine L. Witt,² and Stephanie L. Smith-Roe^{2*}


Environmental and Molecular Mutagenesis 60:845–856 (2019)

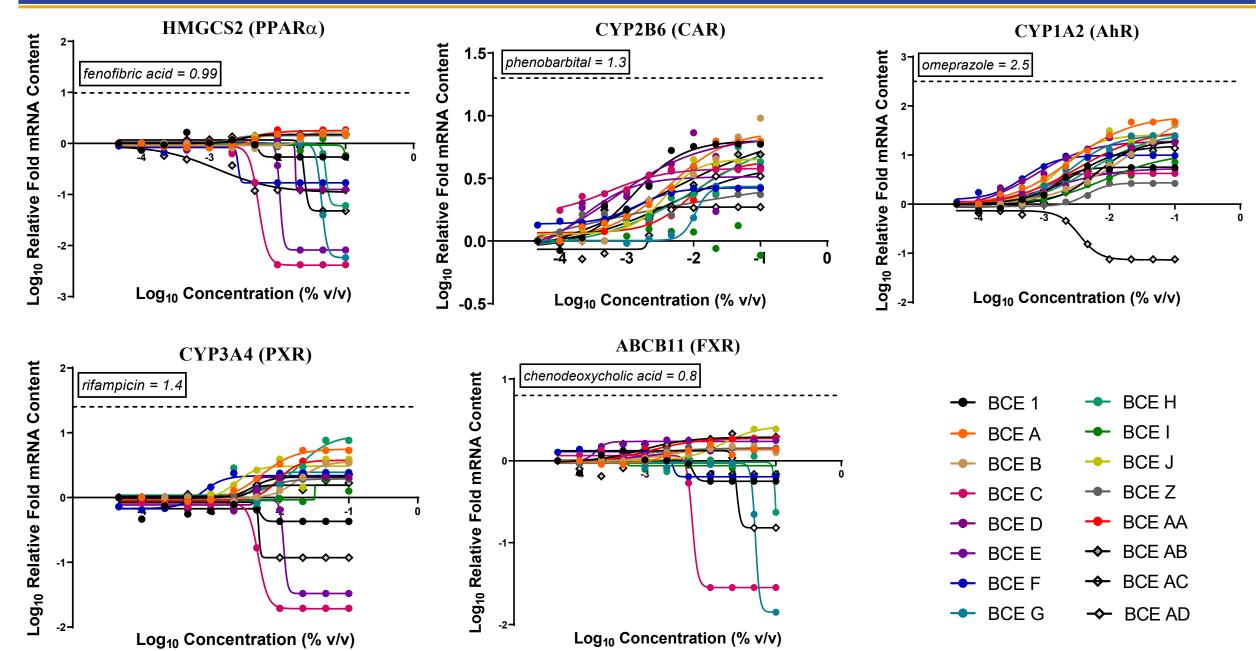
4 hrp53

_____249.9 μg/mL



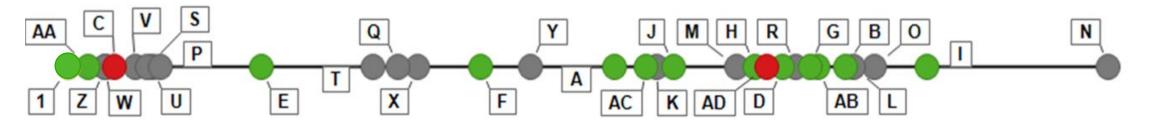

- What are we comparing?
 - Reference black cohosh extract assessed in 90-day
 - Black cohosh extract unfinished samples
 - Black cohosh extract Standard Reference Material
 - Other cohosh extract Standard Reference Materials
 - Formulated black cohosh extract products
- How are we comparing?
 - Chemical comparison
 - Non-targeted chemistry chromatographic profiles
 - Biological comparison
 - In vitro assay
 - Human hepatocyte assay (AhR, CAR, PXR, FXR, PPARα)
 - Genotoxicity micronucleus assay
 - Combining chemical and biological information

Black cohosh (Actaea racemosa)



Ryan et al., (2019). Evaluating Sufficient Similarity of Botanical Dietary Supplements: Combining Chemical and In Vitro Biological Data. Toxicological Sciences. 172:316-329.

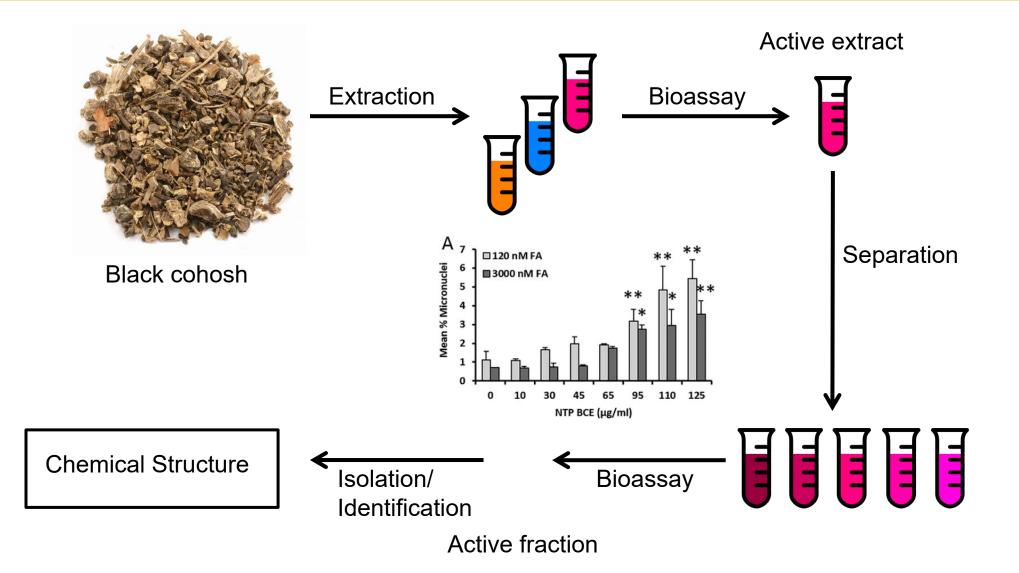
Black cohosh (Actaea racemosa)



Strength of evidence

	Α	В	С	D	Е	F	G	Н	1	J	AA	AB	AC	AD
Nontargeted chemistry	-1	0	1	-1	1	-1	-1	0	0	-1	1	0	0	0
PHH gene expression	1	1	-1	1	1	1	1	1	1	1	1	1	1	-1
Genotoxicity	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Similarity score	0.3	0.7	0.3	0.3	1	0.3	0.3	0.7	0.7	0.3	1	0.7	0.7	0

Visual interval inspection

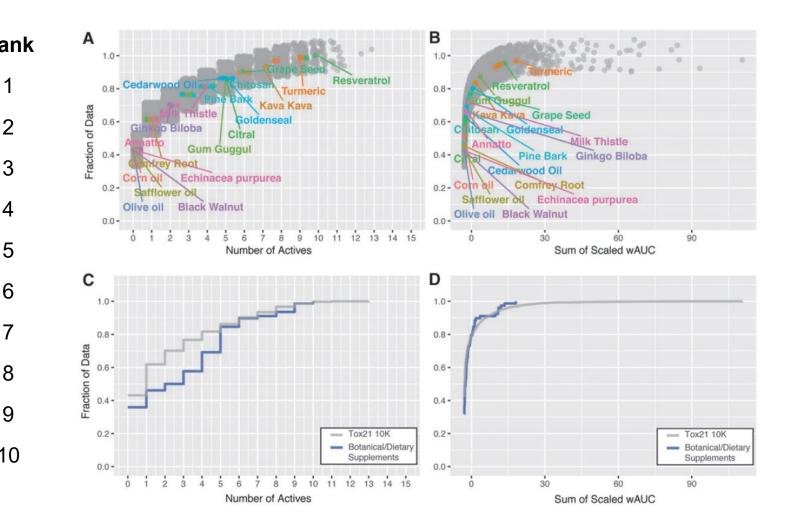


Key points

- Micronucleus induction and megaloblastic anemia are the critical endpoints identified in animal studies
- This finding was replicated in human cells (not a rodent-specific finding)
- An aneugenic mechanism was identified, which indicates there is likely a threshold effect
- All cohoshes induced micronucleus formation (not specific to subset of black cohosh samples and active constituent has not been identified)
- The next step is to identify the constituent(s) responsible for the genotoxic effect

Identifying active constituents

Roberts et al., 2019. Food and Chemical Toxicology. 124: 431-438. Smith-Roe et al., 2018. Environmental and Molecular Mutagenesis 59:416-426.


- Toxicology in the 21st Century (Tox21) is a federal collaboration between EPA, NIH (National Center for Advancing Translational Sciences and the National Toxicology Program) and the Food and Drug Administration
- Phase 2 involved evaluating the 10k chemical library (8193 unique chemicals) in over 75 quantitative high throughput assays measuring stress response and nuclear receptor activity
- Mostly focused on single chemicals, some defined mixtures included

Can the Tox21 platform be used to evaluate botanical dietary supplements and other complex mixtures?

Botanicals in Tox21

F-value	Ran
20312.81	1
1425.55	2
25.72	3
23.55	4
21.79	5
17.50	6
15.85	7
14.20	8
12.27	9
10.57	10
	20312.81 1425.55 25.72 23.55 21.79 17.50 15.85 14.20 12.27

Hubbard et al., 2019, Using Tox21 High-Throughput Screening Assays for the Evaluation of Botanical and Dietary Supplements. Applied *In vitro* Toxicology 5(1):10-25

Botanical safety

FDA STATEMENT

Statement from FDA Commissioner Scott Gottlieb, M.D., on the agency's new efforts to strengthen regulation of dietary supplements by modernizing and reforming FDA's oversight

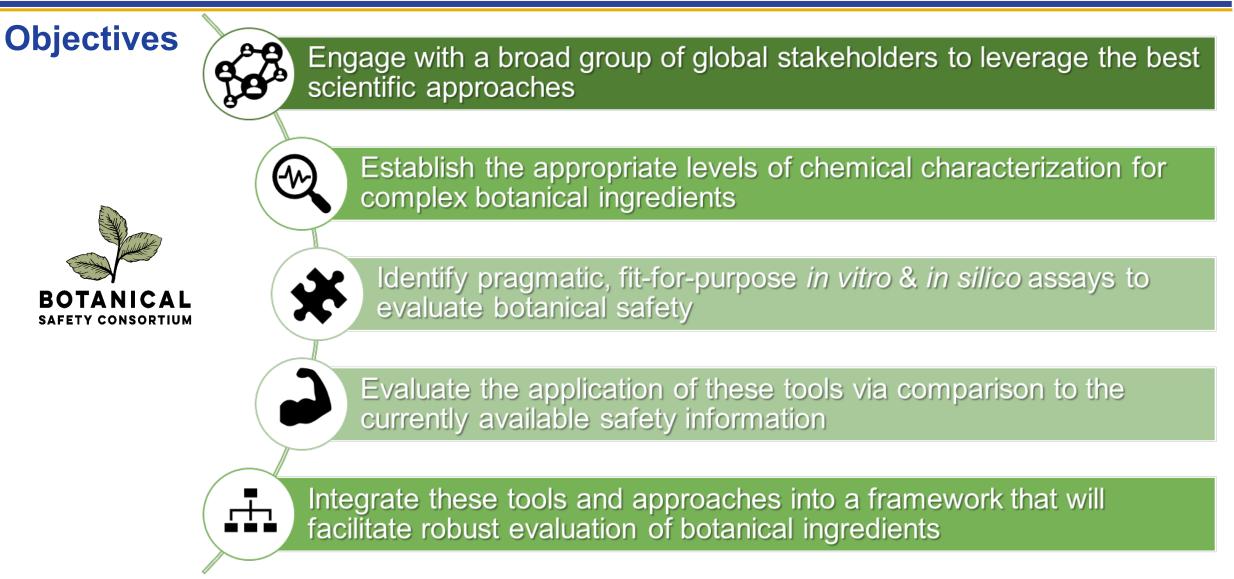
"...as with other commodities that the agency regulates, it's critical that FDA continue to work closely with our partners in industry to achieve our primary goal of protecting public health and safety. As the dietary supplement industry develops new products and ingredients, advances new delivery systems and innovates in other ways, the FDA must do more to leverage its existing resources and authorities to evaluate these products. This requires collaborative research and a shared understanding. I'm pleased to announce that we've recently created the Botanical Safety Consortium, a public-private partnership that will gather leading scientific minds from industry, academia and government to promote scientific advances in evaluating the safety of botanical ingredients and mixtures in dietary supplements. This group will look at novel ways to use cutting-edge toxicology tools, including alternatives to animal testing, to promote the goals of safety and effectiveness we share with consumers and other stakeholders."

A public-private partnership aimed at developing a toolbox of *in vitro* and *in silico* assays and approaches for evaluating botanical safety

About Us Partner with Us News & Events Contact Us Resources Q

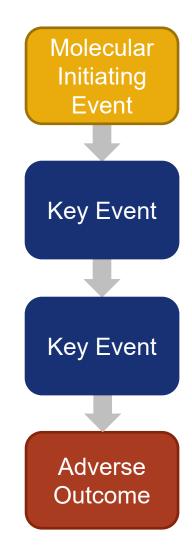
A public-private partnership to improve botanical safety

BOTANICAL SAFETY CONSORTIUM


Get Involved 😜

At a Glance 🕤

Learn More 🕤


The Botanical Safety Consortium (BSC) was officially convened in November 2019, as the result of a Memorandum of Understanding between the US Food and Drug Administration (FDA), the National Institutes of Health's National Institute of Environmental Health Sciences (NIEHS), and the non-profit Health and Environmental Sciences Institute (HESI).

- Better understanding the transition from adaptive to adverse responses in sensitive *in vitro* systems to identify real safety concerns
- Developing recommendations for chemical analysis of complex botanical ingredients and products
- Achieving an appropriate level of biological coverage to identify likely toxicity targets while maintaining a manageable testing platform
- Identifying active constituents and measuring concentrations in *in vitro* assessments to aid in translating findings to humans and comparing across products
- Refining complex mixture read-across methods

- In vitro assays combined with non-targeted chemical analysis were useful in evaluating sufficient similarity of complex mixtures
- In vitro assays can be incorporated into bioassay-guided fractionation approaches to identify active constituents in complex mixtures
- Botanicals evaluated in Tox21 assays point to both challenges and opportunities for complex mixtures
- The Botanical Safety Consortium is actively working to develop a toolkit of in vitro assays and recommended framework for assessing botanical safety

- Chemistry
 - Suramya Waidyanatha
 - Brad Collins
 - Esra Mutlu
 - MRIGlobal
 - Battelle
- Black cohosh
 - Stephanie Smith-Roe
 - ILS
- Echinacea
 - Kristen Ryan
 - Mimi Huang

- Ginkgo biloba extract case study
 - Stephen Ferguson
 - Scott Auerbach
 - Sreenivasa Ramaiahgari
 - Julie Rice
 - Paul Dunlap
 - Arun Pandiri
- Botanical Safety Consortium
 - Michelle Embry
 - Connie Mitchell

- High throughput screening of botanicals
 - Troy Hubbard
 - Jui-Hua Hsieh
 - NCATS

Garcinia cambogia Garcinia gummi-gutta