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Importance of Assessing Developmental Neurotoxicity (DNT)

* Increase in prevalence of developmental disorders in the
US and globally

Autism Spectrum Disorder
E - L _ .

11in 54 in 2016

— WHO: 1 in 6 kids diagnosed at birth

1in 59*

* In vivo DNT Guideline studies primary method of
evaluation

— Require an a priori trigger to be run

18

* Centers for Disease Control and Prevention (CDC)
prevalence estimates are for 4 years prior to the report date
(e.g. 2018 figures are from 2014)
Source: autismspeaks.org, “CDC increases estimate of
autism’s prevalence by 15 percent, to 1 in 59 children”
— Time & resource intensive

— Relevance of animal studies for human translation have been
questioned

n=14

DNT in humans
« Compounds with unknown DNT and NT potential remain
untested

NT in humans

n> 1,000
NT in animals

n > 100,000
Chemicals in use

Revised from Grandjean and Landrigan 2006, Lancet
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DNT in humans
« Compounds with unknown DNT and NT potential remain
untested

AU Mans
Need for a new

Framework!!

Revised from Grandjean and Landrigan 2006, Lancet
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Regulatory Focus on Developing New Frameworks
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In vitro Assays to Model Neurodevelopmental Key Events

ynaptogenesis

~ D e Differentiation :]
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Proliferation D = 2 ‘T Myelination  Neural network

™ _———p
- formation & function

Migration

Aschner et al., 2017, ALTEX 6
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Phase |: Test development
Phase |l: Performance and replicability

Phase lll: Screening

Readiness/
Test method

Phase Il

UKN1

Phase lll

Overall
readiness
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Battery of Tests to Cover the Key Events
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Recommendation on Test Readiness Criteria
for New Approach Methods in Toxicology:
Exemplified for Developmental Neurotoxicity
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AnPEX

Cellular system | NEP Neuro- |ReNcell |Neural hESC/ |CNS 3D 3D 2D PNS Zebra
diff. spheres crest hiPS neurons |human |[ratcell |murine |neurons |fish
migration | based cell culture |cell
diff. culture culture
Name of assay NEP NPC 1-6 |ReNcell |UKN2 UKN1 UKN4 3Dh 3Dr 2Dm UKN5 ZFE
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Battery of Tests to Cover the Key Events

il

Phase I: Test development Integrated Approach to Testing and Assessment (IATA) for DNT
Phase Il: Performance and replicability
Phase lll: Screening Problem formulation
. (regulatory need, endpoint, constraints,
Readiness/ Phasell |Phaselll |Overall PART 1: S R
Test method readiness Existing &
UKN1 Non-testing v
data Gather existing information
NPC1 (human data, in vivo, in vitro, non-testing data) Information
NPC2 adequate for
regulatory
NPC3 conclusion
NPC4
Information
NPCS <€— non-adequate
NPC6 for regulatory
UKN2 (cMINC) |
MESn PART 3: Read-across :m:d.w Ki
Sy ey
UKN4 (NeuriTox) m | Category formation R Neurodevelopmental
Mm Non-mammalian processes/pathways
UKNS (PeriTox) data species (e.g. and/or MIEs/KEs
NSR Zebrafish) Others of DNT AOP(s)
SYN
3Dr *
ZFE 8
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Battery of Tests to Cover the Key Events

Integrated Approach to Testing and Assessment (IATA) for DNT

PART 1:
Existing &
Non-testing
data

Problem formulation
(regulatory need, endpoint, constraints,
acceptable uncertainty)

v

Gather existing information
(human data, in vivo, in vitro, non-testing data)

In vitro assays
anchored to Key
eurodevelopmental
processes/pathways
and/or MIEs/KEs
of DNT AOP(s)

Read-across
Category formation
Non-mammalian
species (e.g.
Zebrafish) Others




Expert Group on DNT

&) OECD

Guidance Document

To inform on the testing battery, its usage and
interpretation. Case studies exemplifying
different regulatory needs.

Regulatory Support and Application
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gg Regulatory Support and Application

Expert Group on DNT

&) OECD

Guidance Document

To inform on the testing battery, its usage and
interpretation. Case studies exemplifying
different regulatory needs.

Case study led by DNTP

Title: Organophosphorus flame retardants, a case study on the use of IATA for
DNT to prioritize a class of compounds

Authors: Helena Hogberg, Jui-Hua Hsieh, Xiaoging Chang, Nisha Sipes, Tim Shafer, Mamta Behl
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Regulatory Support and Application
f Expert Group on DNT FIFRA rev ) 2021- EPA Uses

€1Sdm review ) NAMs for DNT to

' @” OECD NAMSs for DNT support waiving a

Guidance Document guideline DNT study
To inform on the testing battery, its usage and
interpretation. Case studies exemplifying
different regulatory needs.

Case study led by DNTP

Title: Organophosphorus flame retardants, a case study on the use of IATA for
DNT to prioritize a class of compounds

Authors: Helena Hogberg, Jui-Hua Hsieh, Xiaoging Chang, Nisha Sipes, Tim Shafer, Mamta Behl

12




P~
.“”%—

products

Need for class evaluation of Flame Retardants
» Consumer Product Safety Commission (CPSC) petitioned to
initiate regulatory action to ban certain flame retardant
flame retardants

approach to classes

« CPSC must first conduct hazard assessment on classes of

A Class
Approach
to Hazard
Moving away from traditional chemical-by-chemical
— Not practical to test every compound in a traditional in vivo study
hazardous

Assessment of

— Chemicals on which data are insufficient are typically treated as not

Organohalogen
Flame

Retardants
— Untested chemicals often substituted for hazardous chemicals

— Cumulative exposure and risk are often ignored

* Recognizes challenging to evaluate chemical groups

13
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» Continual rise and increase in human exposure
guideline studies

» 20-50 compounds in class including commercial and isomeric mixtures

characterization

Class Evaluation of Flame Retardants (NAS 2019)
Organophosphate Flame Retardants are one class in NAS report

 Aliphatic halogenated OPFRs and aromatic non-halogenated

« Cannot test our way through all combinations using traditional animal

* Need strategy to prioritize compounds for further in-depth hazard

14
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CAS Chemical Name Chemical.ID Structure
Representative Brominated FRs (BFRs) Phased-out (BDE)
5436-43-1 2,2'4,4'-Tetrabromodiphenyl ether BDE-47 L.
79-94-7 3,3'5,5-Tetrabromobisphenol A TBBPA ‘ : Extensively used (and studied)
Organophosphorous FRs (OPFRs)- aliphatic, halogenated
13674-87-8 Tris(1,3-dichloro-2-propyl)phosphate TDCIPP DA
115-96-8 Tris(2-chloroethyl) phosphate TCEP Kf \E .
3‘/\/i4>
Organophosphorous FRs (OPFRs)- Aromatic
115-86-6 Triphenyl phosphate TPHP
68937-41-7 Phenol, isopropylated, phosphate (3:1) IPP* Q/@
1241-94-7 2-Ethylhexy! diphenyl phosphate EHDP*
1330-78-5 Tricresyl phosphate
29761-21-5 Isodecyl diphenyl phosphate
56803-37-3

TMPP*

IDDP*
tert-Butylphenyl diphenyl phosphate

*representative isomer in mixture is shown as structure

BPDP*

@
s
o
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CAS Chemical Name Chemical.ID Structure
Representative Brominated FRs (BFRs) Phased-out (BDE)
5436-43-1 2,2'4,4'-Tetrabromodiphenyl ether BDE-47 L.
79-94.7 3,3,5,5Tetrabromobisphenol A TBBPA ' : Extensively used (and studied)
Organophosphorous FRs (OPFRs)- aliphatic, halogenated
13674-87-8 Tris(1,3-dichloro-2-propyl)phosphate TDCIPP e, Al .
. iphatic
115-96-8 Tris(2-chloroethyl) phosphate TCEP Kf \E .
3‘/\/i4>
Organophosphorous FRs (OPFRs)- Aromatic
115-86-6 Triphenyl phosphate TPHP
68937-41-7 Phenol, isopropylated, phosphate (3:1) IPP* Q/@
1241-94-7 2-Ethylhexy! diphenyl phosphate EHDP*
1330-78-5 Tricresyl phosphate
29761-21-5 Isodecyl diphenyl phosphate
56803-37-3

organohalogens
TMPP*
IDDP*
tert-Butylphenyl diphenyl phosphate

BPDP*
*representative isomer in mixture is shown as structure

@
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Extensively used (and studied)

Aliphatic

CAS Chemical Name Chemical.ID Structure
Representative Brominated FRs (BFRs) Phased-out (BDE)
5436-43-1 2,2'4,4'-Tetrabromodiphenyl ether BDE-47 L.
79-94-7 3,3',5,5'-Tetrabromobisphenol A TBBPA E E
Organophosphorous FRs (OPFRs)- aliphatic, halogenated
13674-87-8 Tris(1,3-dichloro-2-propyl)phosphate TDCIPP DA
115-96-8 Tris(2-chloroethyl) phosphate TCEP Kf \E .
3‘/\/i4>
Organophosphorous FRs (OPFRs)- Aromatic
115-86-6 Triphenyl phosphate TPHP
68937-41-7 Phenol, isopropylated, phosphate (3:1) IPP* Q/@
1241-94-7 2-Ethylhexy! diphenyl phosphate EHDP*
1330-78-5 Tricresyl phosphate
29761-21-5 Isodecyl diphenyl phosphate
56803-37-3

TMPP*

IDDP*
tert-Butylphenyl diphenyl phosphate

*representative isomer in mixture is shown as structure

BPDP*

it T e

organohalogens

Aromatic phosphates

(non-halogenated)

17



Battery of Tests Covers Key Neurodevelopmental Events

Apoptosis '
BeE " - SynaptogeneSIs

: *é‘ - Cell lines, primary cells,
D — @ — i stem cells, mainly human
/ v Neurite growth N y = derived
£ X ‘vash .

>
—_ Differentiation f
9 C Sl
\ T |f Y
Proliferation . 5 _,‘ . Myelination Neural network
- formation & function
&
Migration

2-D assays 3D- Neurospheres Zebrafish

18
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Assay Model References
Proliferation
proliferation@IUF Human 3D neurosphere (Klose et al. 2021)
Datasets from the proliferation@USEPA Human hNP1 (Behl et al. 2015)
] Oligo differentiation
literature were re- oligodendrocyte differentiation@IUF Human 3D neurosphere  (Klose et al. 2021)
evaluated using the Migration
NCC migration@UKonstanz Human crest cells (Nyffeler et al. 2017)
BMC approach to neuronal migration@IUF* Human 3D neurosphere (Klose et al. 2021)
compare assays INn a oligo migration@IUF* Human 3D neurosphere (Klose et al. 2021)
i Neurite outgrowth
unified way. neurite outgrowth@USEPA Rat primary cortical (Behl et al. 2015)
neurite outgrowth@MolDevices Human iPSC-derived (Ryan et al. 2016)
See DNT-DIVER neurite outgrowth@USEPA Human hN2 (Behl et al. 2015)
_ i Human LUHMES (Delp et al. 2018)
https://sandbox.ntp.ni g:: “e”’_':e °“:9r°""::gﬂ§°"s:a"z Human ESC-derived  (Delp et al. 2018)
. neurite outgrow onstanz
ehs.nlh.gov/neurotox/ neurite outgrowth@IUF* Human 3D neurosphere
Firing/Network formation
acute neuronal firing@USEPA
network formation@USEPA
Behavior

Rat primary cortical
behavior@Biobide

Rat primary cortical
behavior@OregoneStateU

(Klose et al. 2021)
behavior@UCDavis

(Behl et al. 2015)

(Frank et al. 2017)
Zebrafish

(Quevedo et al. 2019)
Zebrafish
Zebrafish

(Hagstrom et al. 2019)
(Dach et al. 2019)
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<82 DNT- Data Integration and Visualization Enabling Resource

What can you do in DNT-DIVER?
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2,2'4,4'5,5-Hexabromodipheny! ether (BDE-153) -| 1,000
100
2,2,4,4'5-Pentabromodiphenyl ether (BDE-89) |
10
2,2',4,4'-Tetrabromodiphenyl ether
1
2-Ethylhexyl diphenyl phosphate (EHDP) 01
3,3' 5,5 Tetrabromobisphenol A 0.01
Isodecyl diphenyl phosphate 0.001
0.0001
Phenol, isopropylated, phosphate (3:1)
0.00001
Tricresyl phosphate D Not active (no BMC|
Triphenyl phosphate I:I Mot tested
e s lINEEEE BN EEEEE
tert-Butylpheny! dipheny! phosphate

Compare activity of compounds/classes across multiple assays

https://sandbox.ntp.niehs.nih.gov/neurotox/
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€ DNT-Data Integration and Visualization Enabling Resource

What can you do in DNT-DIVER?

s = Non-viability | Benchmark concentration value (M)
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e
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0 Methyl mercuric (Il) chloride *
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Isodecyl diphenyl phosphate 0.001 et L atid o e
Ime -
0.0001 ¥
Phenol, isopropylated, phosphate (3:1)
0.00001

tert-Butylphenyl diphenyl phosphate

Tricresyl phosphate

D Not active (no BMC|

Troneny prosprete . [ worsesea &-Hydroxydopamine hydrochioride Y
Tris(2-chioroethyl) phosphate .-.-.-. .- ..... Dibenz{a hjanthracene - *
tert-Butylphenyl diphenyl phosphate . . — ..
Carbamic acid, butyl-, 3-todo-2-propynyl ester - |2/ ifalfs (3 *
2,2'4.4'5,5'Hexabromodiphenyl ether (BDE-153) 5 ..

Decreasing order of potency

Compare activity of compounds/classes across multiple assays

<

Compare activity of compounds within an assay

https://sandbox.ntp.niehs.nih.gov/neurotox/
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What can you do in DNT-DIVER?
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Compare activity of compounds/classes across multiple assays
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Summary of Findings
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acute neuronal firing@USEPA
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neurite outgrowth@USEPA

neurite outgrowth@MolDevices
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oligo migration@IUF
neuronal migration@IUF
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Summary of Findings

D I stage WM stage
L | | R system proliferation

migration
_ TBBPA 10uM neurite outgrqwth

network function
BPDP behavior

w

30uM
EHDP system
rat in vitro
IDDP
100uM human in vitro
IPP ) ) human 3D neurosphere
|:| inactive .
zebrafish
TMPP untested

TPHP

TDCIPP

TCEP

1) Overall, as a class the
aromatic OPFRs appear to
be active in a variety of
DNT assays

2) Show comparable activity
to other classes
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Sources of Uncertainty
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Sources of Uncertainty
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1) Lack of testing across assays
(TDCIPP)
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Sources of Uncertainty

TuM stage
proliferation
BDE-47 3uM differentiation
migration
TBBPA 10uM neurite outgrqwth
network function
BPDP behavior
30uM
EHDP system
rat in vitro
IDDP
100pM human in vitro
IPP ) ) human 3D neurosphere
|:| inactive .
zebrafish
TMPP untested
TPHP
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Relevance to Human Exposures
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Relevance to Human Exposures
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Consideration for further development of AOP

Cellular and Organ Effects

Organism Effects Human Effectst

Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate

Monolayer in vitro cell Rodent in vivo @ - Adverse impacts on
culture + Impaired learning and Cog‘nci‘t\’ve devle\?argmj ] [
+Reduced response 0 sy Ster Flame Retardants and Plasticizers

skills 2
3D in vitro cell culture
« Alternation in expression
of glutamate NMDA

* Adverse behavioral
development includit
withdrawal, attentior

Heather B. Patisaul,” Mamta Behl,>’ Linda S. Birnbaum,>3* Arlene Blum,>° Miriam L. Diamond,” Seth Rojello Ferndndez,®

NaAsnd L asparti oonens serress  Helena T. Hogberg,® Carol F. Kwiatkowski,>® Jamie D. Page,’” Anna Soehl,” and Heather M. Stapleton*
decrease © en

aggression? .

* Reduced levels of

glutamate © * Decrease in 1Q and

working memory #
Rodent in vivo
+ Disruption of glutamate 7*

« Disruption of NAA,
creatine and lactic acid 7*

* Increased levels of
glutamate &*

* Neuronal death 7&*

GABA (GAMMA-AMINOBUTYRIC ACID)

Cellular and Organ Effects

* Social behavioral
problems including l¢
responsible behavior
and more externalizil
behaviors®

Patisaul et al., 2021 EHE

INFLAMMATION, GLIA ACTIVATION AND OXIDATIVE STRESS

Cellular and Organ Effects Organism Effects

.o Zebrafish @ - Adverse impacts on
« Altered locomotor cognitive development,
including early language

Human Effects®

@ Monolayer in vitro cell
culture

= Increased glia/neuro ratio’

Organism Effects Human Effectst

6
@ Monolayer in vitro cell o Zebrafish = Adverse impacts on et ability, and fine motor -
A T e | Example of using KEs +
« Inhibition of GABA R?® including early langu A oft )
é Rodent in vivo ability, and fine motc @ D v.ltro c?" GEHTIR * Adverse behavioral
@ 3D invitro cell culture o (meEiies) (Eaming ane skills2 + Gliosis/activated development including

astrocytes*

. . . .
- Decrease i genes 7 it e underlying mechanistic data in
involved in GgABA s—t + Adverse behavioral « Increased cytokine release * problems, depression,
9 5 + Increased ambulatory development includit hyperactivity, and
production an behavior” withdrawal, attentior

o Zebrafish aggression'©

problems, giepressicl « Oxidative stress*
hyperactivity, and | 156 + Decrease in 1Q and
aggression? « Increased GFAP levels working memory "

) * Decreased histamine
o Zebrafish « Decrease in 1Q and levels 45
* Altered levels of GABA working memory *
neurotransmitter °"

signaling ®
« Decrease in GABA
neurotransmitter &

the absence of MIEs

Cellular and Organ Effects

* Social behavioral
problems including less
responsible behavior,
and more externalizing
behaviors

Rodent in vivo
« Oxidative stress’?®

* Microglia mediated
inflammation 2

* Increase in proinflam-
matory cytokines7*

NEURONAL MORPHOLOGY AND FUNCTION

Cellular and Organ Effects

Social behavioral
problems including l¢
responsible behavior
and more externalizi
behaviors ®

Rodent in vivo
* GABA antagonist **

+ Disruption of GABA
neurotransmitter 7*

OTHER NEUROTRANSMITTERS

Cellular and Organ Effects

Organism Effects Human Effects

o Zebrafish @ - Altered levels of TSH'™®
* Vulnerability to
anxiety-like behavior
in females™

Monolayer in vitro cell

culture

« Antagonist and/or agonist
for human hormone
receptors'?

* Incresed estradiol and
testosterone levels?

« Upregulation of genes
involved in thyroid
synthesis *

« PPARY1 agonist ¢

* Thyroid hormone
disruption®

+ Disruption of sex steroids
and sex steroid binding
globulins 7

Rodent in vivo

« Sex differences in
activity and anxiety
behavior 01

Organism Effects Human Effectst Organism Effects Human Effectst

o Zebrafish @ - Adverse impacts on
« Vulnerability to cognitive developme

anxiety-like behavior including early langu
potentially due to ability, and fine motc

! : 2
decrease in dopamine'® skills

Zebrafish @ . Adverse impacts on
cognitive development,
including early language
ability, and fine motor
skills ®

Monolayer in vitro cell

@ Monolayer in vitro cell
culture

culture

* 2D: Increase in differentia-
tion of dopaminergic
neurons '

* Altered locomotor

« Decrease in neurite out- behavior #6819

growth 131415

Zebrafish

* Thyroxine and T3
decreased in plasma’

* Increase in T3 and T4 *

« Alteration of
steroidogenesis, and
estrogen metabolism?

« Alteration in genes
involved in thyroid
metabolism*

* Decreased neuronal
« Adverse behavioral network activity 16 * Adverse behavioral
development includit development including
withdrawal, attentior withdrawal, attention
problems, depressior problems_, depression,
hyperactivity, and hyperactivity, and
aggression? aggression'®

Rodent in vivo

* Increased ambulatory
behavior **

@ 3D in vitro cell culture
« Decrease in dopamine
neurotransmitter ®

o Zebrafish

+ Dopamine levels decrease '®

* Dopamine and dopamine * Decrease in 1Q and
signaling related genes working memory *
decreased ™

« Decreased serotonin and
histamine levels™®

» Cytotoxic to neural cells"”

3D in vitro cell culture

« Decrease in expression of
neurite skeleton genes* « Decrease in 1Q and

« 3D: Decreased expression working memory "

of genes involved in .

synaptogenesis *

o Zebrafish

« Decrease in genes

Social behavioral
problems including less
responsible behavior,
and more externalizing
behaviors

* Social behavioral
problems including l¢
responsible behavior
and more externalizit
behaviors®

Rodent in vivo
* Altered gene expression

Rodent in vivo linked to endocrine

* D mine signalin G
a\?epraed me gnaling involved in cytoskeleton « Increased serum thyroxine
organization ¢ levels ®1©

+ Disruption in serotonin
pathways &7
« Serotonin levels increased'®

* Synaptogenesis marker
altered®®

« Endocrine disruption®

34



P~
W

Conclusions Case Study

 Overall, evidence available and the approach taken in this IATA case study

allowed to achieve an acceptable level of certainty in prioritization of
compounds for further testing

* |t also allowed for DNT hazard identification and characterization of the OPFRs
which was one of the purposes of the assessment.

* The analysis could likely be used by organizations like the CPSC to prioritize

compounds for further testing and use the mechanistic data generated here as
weight of evidence.
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* Reduce uncertainty levels

o Anchor data to AOPs

o Confirm IVIVE models with in vivo data

o Harmonization of protocols

Future Directions
o Transferability of assays

o Understand bioavailability in the different assays

* Explore ways of weighting the different assays

o How many assays need to be positive for different regulatory purposes?

o Should assays with higher biological activity be given more weight?
» Develop assays for key events currently missing

neurotransmitters and receptors

o E.g., Myelination, differentiation and proliferation of astrocytes and microglia, ontogeny of

36



Human iPSC-Derived
Neural Model

Many of the major cell types of the
CNS

Microglia can be added
350-500 um diameter

Reproducible in size and cell
composition

Shown critical elements of neural
development

Genetic background from patient iPSC ASRERS

Pamies et al., 2018, Tox. Appl. Pharmacol.



Functional neurons and glial cells
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Ongoing Work at DNTP

Stakeholders nominated chemical library Assay development

Selection Criteria In vitro and in vivo
 Evidence of DNT in vivo

: Kn(.)wn. human exposure Assessing the Association of Mitochondrial Function
 Guideline study complete, and Inflammasome Activation in Murine
lacking in vitro

Macrophages Exposed to Select Mitotoxic Tri-
« Suggested by multiple Organotin Compounds

Sta kehOIderS Gabrielle M Childers 1, Caroline A Perry 1, Barbara Blachut ', Negin Martin 2, Carl D Bortner 3,

., . Stella Sieber 4, Jian-Liang Li ¥, Michael B Fessler &, G Jean Harry
« Incomplete in vitro battery data o o '

> Environ Health Perspect. 2021 Apr;129(4):47015. doi: 10.1289/EHP8314. Epub 2021 Apr 30.

Phase 1: 115 chemical set Linking mechanistic bioactivity
Currently tested in the battery in the

- vidual labs to clinical end-points

biobide

Partner
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Literature reviews

DNT-DIVER & screening battery h Imaging

DNT HEI in DNTP’s Translational Toxicology Pipeline

), Reduce & refine animal testing

Q

Neurodevelopmental
Disorders

(7

Public and
Stakeholders

Automated Behavior

IVIVE Others — e.g., Omics
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DNT HEI in DNTP’s Translational Toxicology Pipeline

Ultimate goal is to more effectively predict DNT for unknown environmental chemicals to prevent
neurodevelopmental disorders

Reduce & refine animal testing

Literature reviews

Neurodevelopmental Public and
Disorders Stakeholders

Imaging
‘ Automated Behavior
IVIVE Others — e.g., Omics

DNT-DIVER & screening battery
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