

Developmental Neurotoxicity Assessment Using In Vitro Assays

Helena Hogberg

Division of the NTP, National Institute of Environmental Health Sciences NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

DNT HEI Program Management Team

DNTP

Mamta Behl*
Former Team Lead

Jeremy Erickson ODS

Laura Hall OPO

Chris McPherson MTB

Robert Sills CMPB, Liaison

Shannah Witchey STB

Neurobiology Core DIR

Jesse Cushman NL/DIR

Briana Bernstein NL/DIR (adjunct)

Leslie Wilson NL/DIR (adjunct)

Division of the National Toxicology Program (DNTP)

ODS (Office of Data Science)

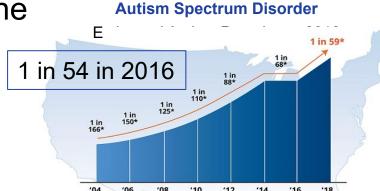
OPO (Office of Program Operations)

CMPB (Comparative & Molecular Pathogenesis Branch)

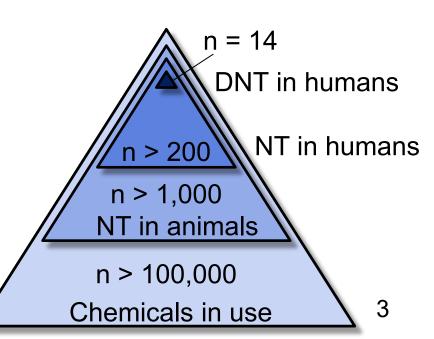
MTB (Mechanistic Toxicology Branch)

STB (Systems Toxicology Branch)

Division of Intramural Research (DIR)


NL (Neurobiology Laboratory)

Importance of Assessing Developmental Neurotoxicity (DNT)


 Increase in prevalence of developmental disorders in the US and globally

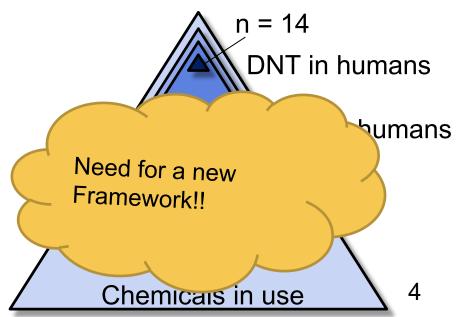
- WHO: 1 in 6 kids diagnosed at birth
- In vivo DNT Guideline studies primary method of evaluation
 - Require an a priori trigger to be run
 - Time & resource intensive
 - Relevance of animal studies for human translation have been questioned
- Compounds with unknown DNT and NT potential remain untested

* Centers for Disease Control and Prevention (CDC) prevalence estimates are for 4 years prior to the report date (e.g. 2018 figures are from 2014)

Source: autismspeaks.org, "CDC increases estimate of autism's prevalence by 15 percent, to 1 in 59 children"

Importance of Assessing Developmental Neurotoxicity (DNT)

Increase in prevalence of developmental disorders in the US and globally


- WHO: 1 in 6 kids diagnosed at birth
- In vivo DNT Guideline studies primary method of evaluation
 - Require an a priori trigger to be run
 - Time & resource intensive
 - Relevance of animal studies for human translation have been questioned
- Compounds with unknown DNT and NT potential remain untested

Autism Spectrum Disorder

* Centers for Disease Control and Prevention (CDC) prevalence estimates are for 4 years prior to the report date (e.g. 2018 figures are from 2014)

Source: autismspeaks.org, "CDC increases estimate of autism's prevalence by 15 percent, to 1 in 59 children"

Revised from Grandjean and Landrigan 2006, Lancet

Regulatory Focus on Developing New Frameworks

Perspectives Brief Communication

Project TENDR: Targeting Environmental Neuro-Developmental Risks. The TENDR **Consensus Statement**

http://dx.doi.org/10.1289/EHP358

OXFORD www.toxsci.oxfordiournals.org

TOXICOLOGICAL SCIENCES, 167(1), 2019, 45-57

doi: 10.1093/toxsci/kfy211 Advance Access Publication Date: November 23, 2018

FORUM

International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing

Magdalini Sachana,*,1 Anna Bal-Price,† Kevin M. Crofton,‡ Susanne H. Bennekou, Timothy J. Shafer, Mamta Behl, and Andrea Terron

Toxicology and Applied Pharmacology 354 (2018) 3-6

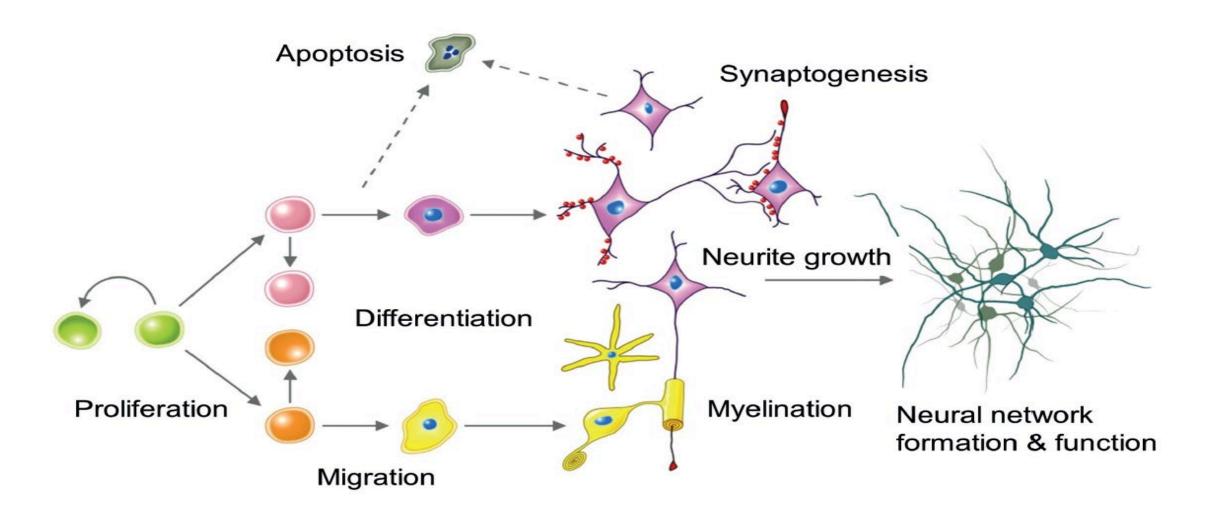
Toxicology and Applied Pharmacology

journal homepage: www.elsevier.com/locate/taap

Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes

Ellen Fritsche^a, Philippe Grandjean^b, Kevin M. Crofton^c, Michael Aschner^d, Alan Goldberg^{e, w}, Tuula Heinonen^f, Ellen V.S. Hessel^g, Helena T. Hogberg^h, Susanne Hougaard Bennekouⁱ, Pamela J. Lein^j, Marcel Leist^k, William R. Mundy^l, Martin Paparella^m, Aldert H. Piersmaⁿ, Magdalini Sachana^o, Gabriele Schmuck^p, Roland Solecki^q, Andrea Terron^r, Florianne Monnet-Tschudi^s, Martin F. Wilks^t, Hilda Witters^u, Marie-Gabrielle Zurich^s, Anna Bal-Price^{v,*}

FIFRA Scientific Advisory Panel **Meeting Minutes and Final Report** No. 2020-02


Peer Review of the Use of New Approach Methodologies (NAMs) to Derive Extrapolation Factors and **Evaluate Developmental Neurotoxicity for Human** Health Risk Assessment

September 15-18, 2020

FIFRA Scientific Advisory Panel Meeting

In vitro Assays to Model Neurodevelopmental Key Events

Battery of Tests to Cover the Key Events

Phase I: Test development

Phase II: Performance and replicability

Phase III: Screening

Readiness/ Test method	Phase I	Phase II	Phase III	Overall readiness
UKN1	А	В	В	B+
NPC1	А	А	А	A
NPC2	А	А	А	A
NPC3	А	А	В	A-
NPC4	А	В	С	В
NPC5	А	А	В	A-
NPC6	А	В	В	B+
UKN2 (cMINC)	А	В	А	A-
MESn	С	D	D	D+
UKN4 (NeuriTox)	А	А	А	А
UKN5 (PeriTox)	А	В	Α	A-
NSR	С	D	D	D+
SYN	В	В	В	В
Nnff	В	Α	В	B+
3Dr	А	А	А	Α
3Dh	В	С	С	C+
ZFE	В	В	А	B+

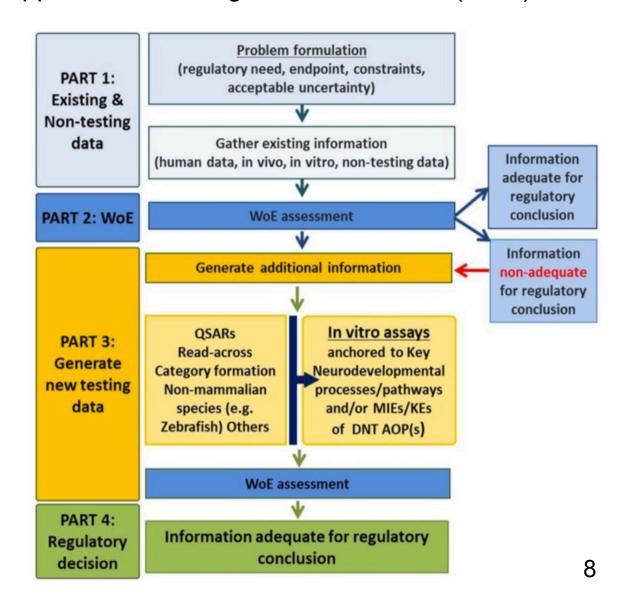
Integrated Approach to Testing and Assessment (IATA) for DNT Bal-Price et al., 2018, ALTEX

Recommendation on Test Readiness Criteria for New Approach Methods in Toxicology: Exemplified for Developmental Neurotoxicity

Anna Bal-Price ¹, Helena T. Hogberg ², Kevin M. Crofton ³, Mardas Daneshian ⁴, Rex E. FitzGerald ⁵, Ellen Fritsche ⁶, Tuula Heinonen ⁷, Susanne Hougaard Bennekou ⁸, Stefanie Klima ⁹, Aldert H. Piersma ¹⁰, Magdalini Sachana ¹¹, Timothy J. Shafer ³, Andrea Terron ¹², Florianne Monnet-Tschudi ^{5,13}, Barbara Viviani ¹⁴, Tanja Waldmann ⁹, Remco H. S. Westerink ¹⁵, Martin F. Wilks ⁵, Hilda Witters ¹⁶, Marie-Gabrielle Zurich ^{5,13} and Marcel Leist ^{4,9}

Cellular system	NEP diff.	Neuro- spheres	ReNcell	Neural crest migration	hESC / hiPS based diff.	CNS neurons	3D human cell culture	3D rat cell culture	2D murine cell culture	PNS neurons	Zebra fish
Name of assay	NEP diff.	NPC 1-6	ReNcell	UKN2 (cMINC)	UKN1	UKN4 (Neuri Tox)	3Dh	3Dr	2Dm	UKN5 (PeriTox)	ZFE

Battery of Tests to Cover the Key Events


Phase I: Test development

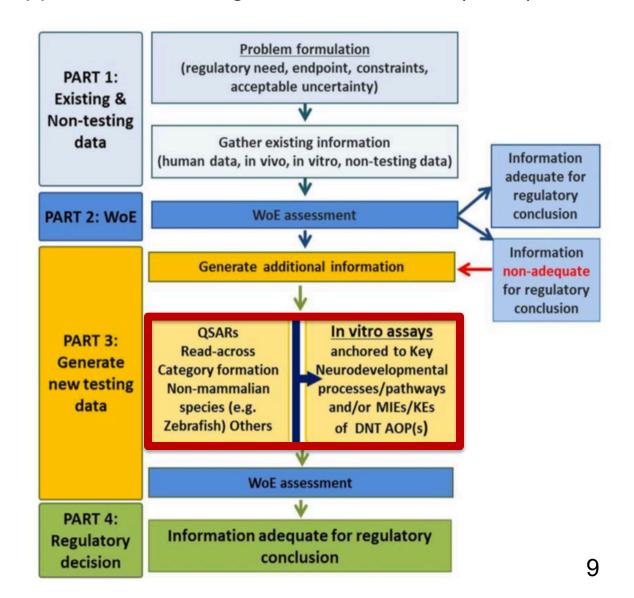
Phase II: Performance and replicability

Phase III: Screening

Readiness/ Test method	Phase I	Phase II	Phase III	Overall readiness
UKN1	А	В	В	B+
NPC1	А	А	А	А
NPC2	А	А	А	А
NPC3	А	А	В	A-
NPC4	А	В	С	В
NPC5	А	А	В	A-
NPC6	А	В	В	B+
UKN2 (cMINC)	А	В	Α	A-
MESn	С	D	D	D+
UKN4 (NeuriTox)	А	А	А	А
UKN5 (PeriTox)	А	В	А	A-
NSR	С	D	D	D+
SYN	В	В	В	В
Nnff	В	Α	В	B+
3Dr	А	А	А	A
3Dh	В	С	С	C+
ZFE	В	В	А	B+

Integrated Approach to Testing and Assessment (IATA) for DNT

Battery of Tests to Cover the Key Events


Phase I: Test development

Phase II: Performance and replicability

Phase III: Screening

Readiness/ Test method	Phase I	Phase II	Phase III	Overall readiness
UKN1	А	В	В	B+
NPC1	А	А	А	Α
NPC2	А	А	А	A
NPC3	А	А	В	A-
NPC4	А	В	С	В
NPC5	А	А	В	A-
NPC6	А	В	В	B+
UKN2 (cMINC)	А	В	А	A-
MESn	С	D	D	D+
UKN4 (NeuriTox)	А	А	А	А
UKN5 (PeriTox)	А	В	А	A-
NSR	С	D	D	D+
SYN	В	В	В	В
Nnff	В	Α	В	B+
3Dr	А	А	А	Α
3Dh	В	С	С	C+
ZFE	В	В	А	B+

Integrated Approach to Testing and Assessment (IATA) for DNT

Regulatory Support and Application

Expert Group on DNT

Guidance Document

To inform on the testing battery, its usage and interpretation. Case studies exemplifying different regulatory needs.

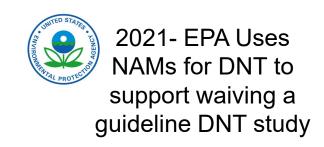
Regulatory Support and Application

To inform on the testing battery, its usage and interpretation. Case studies exemplifying different regulatory needs.

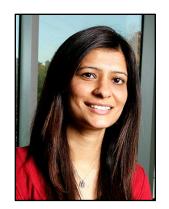
Case study led by DNTP

Title: Organophosphorus flame retardants, a case study on the use of IATA for DNT to prioritize a class of compounds

Authors: Helena Hogberg, Jui-Hua Hsieh, Xiaoqing Chang, Nisha Sipes, Tim Shafer, Mamta Behl

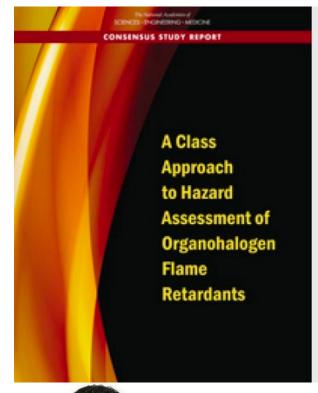


Regulatory Support and Application



To inform on the testing battery, its usage and interpretation. Case studies exemplifying different regulatory needs.

Case study led by DNTP


Title: Organophosphorus flame retardants, a case study on the use of IATA for DNT to prioritize a class of compounds

Authors: Helena Hogberg, Jui-Hua Hsieh, Xiaoqing Chang, Nisha Sipes, Tim Shafer, Mamta Behl

Need for class evaluation of Flame Retardants

- Consumer Product Safety Commission (CPSC) petitioned to initiate regulatory action to ban certain flame retardant products
- CPSC must first conduct hazard assessment on classes of flame retardants
- Moving away from traditional chemical-by-chemical approach to classes
 - Not practical to test every compound in a traditional in vivo study
 - Chemicals on which data are insufficient are typically treated as not hazardous
 - Untested chemicals often substituted for hazardous chemicals
 - Cumulative exposure and risk are often ignored
- Recognizes challenging to evaluate chemical groups

Class Evaluation of Flame Retardants (NAS 2019)

Organophosphate Flame Retardants are one class in NAS report

- 20-50 compounds in class including commercial and isomeric mixtures
- Continual rise and increase in human exposure
- Aliphatic halogenated OPFRs and aromatic non-halogenated
- Cannot test our way through all combinations using traditional animal guideline studies
- Need strategy to prioritize compounds for further in-depth hazard characterization

Chemicals in the IATA

CAS	Chemical Name	Chemical.ID	Structure	
	Represent	ative Brominated	FRs (BFRs)	
5436-43-1	2,2'4,4'-Tetrabromodiphenyl ether	BDE-47		Br Br Br
79-94-7	3,3',5,5'-Tetrabromobisphenol A	TBBPA		HO CH ₃ Br OH Br OH

Phased-out (BDE)

Extensively used (and studied)

	Organophosphorous FRs (OPFRs)- aliphatic, halogenated						
13674-87-8	Tris(1,3-dichloro-2-propyl)phosphate	TDCIPP	a a				
115-96-8	Tris(2-chloroethyl) phosphate	TCEP	0 = P - 0				

	Organophospho	orous FRs (O	PFRs)- Aromatic
115-86-6	Triphenyl phosphate	TPHP	
68937-41-7	Phenol, isopropylated, phosphate (3:1)	IPP*	
1241-94-7	2-Ethylhexyl diphenyl phosphate	EHDP*	
1330-78-5	Tricresyl phosphate	TMPP*	Orto Orto
29761-21-5	Isodecyl diphenyl phosphate	IDDP*	
56803-37-3	tert-Butylphenyl diphenyl phosphate	BPDP*	

Chemicals in the IATA

CAS	Chemical Name	Chemical.ID	Structure	
	Representa	ative Brominated F	Rs (BFRs)	
5436-43-1	2,2'4,4'-Tetrabromodiphenyl ether	BDE-47		Br O Br Br
79-94-7	3,3',5,5'-Tetrabromobisphenol A	TBBPA		HO CH ₃ Br OH

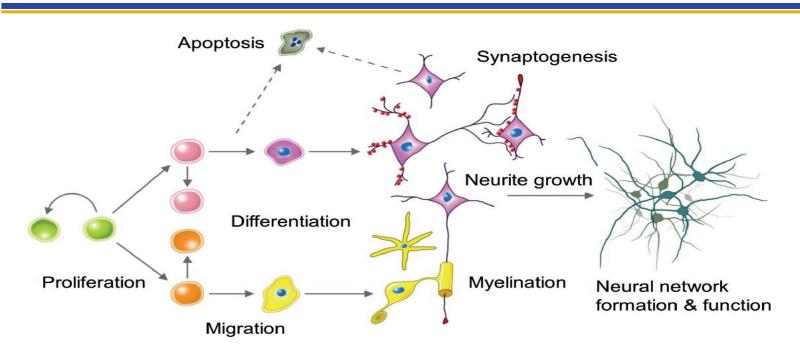
Phased-out (BDE)

Extensively used (and studied)

	Organophosphorous FRs (O	PFRs)- aliphatic, ha	logenated
13674-87-8	Tris(1,3-dichloro-2-propyl)phosphate	TDCIPP	
115-96-8	Tris(2-chloroethyl) phosphate	TCEP	0=P-0 0=Q

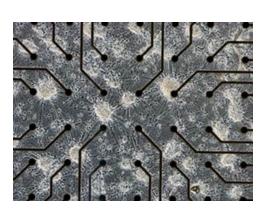
Aliphatic organohalogens

	Organophospho	orous FRs (O	PFRs)- Aromatic
115-86-6	Triphenyl phosphate	TPHP	
68937-41-7	Phenol, isopropylated, phosphate (3:1)	IPP*	
1241-94-7	2-Ethylhexyl diphenyl phosphate	EHDP*	
1330-78-5	Tricresyl phosphate	TMPP*	
29761-21-5	Isodecyl diphenyl phosphate	IDDP*	
56803-37-3	tert-Butylphenyl diphenyl phosphate	BPDP*	

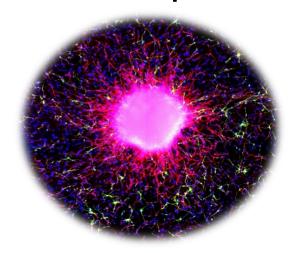


Chemicals in the IATA

CAS	Chemical Name	Chemical.ID Structu			
5436-43-1	Representa 2,2'4,4'-Tetrabromodiphenyl ether	tive Brominated FRs (BFR: BDE-47	S)	Phas	sed-out (BDE)
79-94-7	3,3',5,5'-Tetrabromobisphenol A	ТВВРА	Br CH ₃ Br OH	Exte	nsively used (and studied)
13674-87-8	Organophosphorous Tris(1,3-dichloro-2-propyl)phosphate	FRs (OPFRs)- aliphatic, h	nalogenated	■	Aliphatic
115-96-8	Tris(2-chloroethyl) phosphate	TCEP	0= 1-0		organohalogens
		norous FRs (OPFRs)- Aro	matic		
115-86-6	Triphenyl phosphate	TPHP			
68937-41-7	Phenol, isopropylated, phosphate (3:1)) IPP*			
1241-94-7	2-Ethylhexyl diphenyl phosphate	EHDP*			
1330-78-5	Tricresyl phosphate	TMPP*		_	Aromatic phosphates (non-halogenated)
29761-21-5	Isodecyl diphenyl phosphate	IDDP*			,
56803-37-3	tert-Butylphenyl diphenyl phosphate	BPDP*			



Battery of Tests Covers Key Neurodevelopmental Events



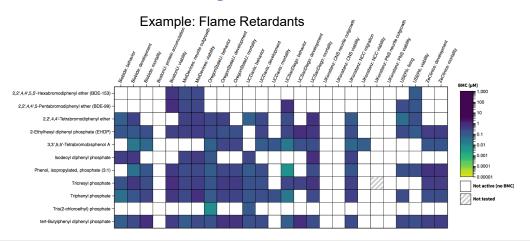
Cell lines, primary cells, stem cells, mainly human derived

2-D assays

3D-Neurospheres

Zebrafish

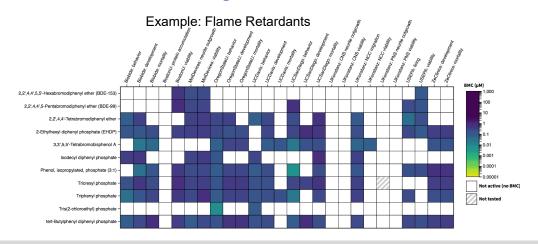
Datasets from the literature were reevaluated using the BMC approach to compare assays in a unified way.


See DNT-DIVER
https://sandbox.ntp.ni
ehs.nih.gov/neurotox/

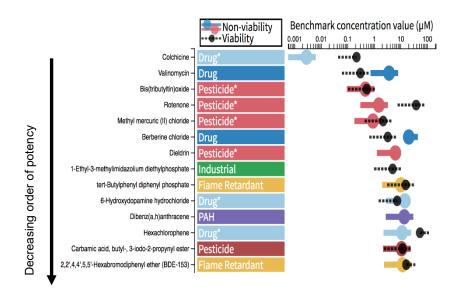
Assay	Model	References
Proliferation		
- proliferation@IUF	Human 3D neurosphere	(Klose et al. 2021)
- proliferation@USEPA	Human hNP1	(Behl et al. 2015)
Oligo differentiation		
- oligodendrocyte differentiation@IUF	Human 3D neurosphere	(Klose et al. 2021)
Migration		
 NCC migration@UKonstanz 	Human crest cells	(Nyffeler et al. 2017)
 neuronal migration@IUF* 	Human 3D neurosphere	(Klose et al. 2021)
- oligo migration@IUF*	Human 3D neurosphere	(Klose et al. 2021)
Neurite outgrowth		
 neurite outgrowth@USEPA 	Rat primary cortical	(Behl et al. 2015)
 neurite outgrowth@MolDevices 	Human iPSC-derived	(Ryan et al. 2016)
- neurite outgrowth@USEPA	Human hN2	(Behl et al. 2015)
- CNS neurite outgrowth@UKonstanz	Human LUHMES	(Delp et al. 2018)
- PNS neurite outgrowth@UKonstanz	Human ESC-derived	(Delp et al. 2018)
- neurite outgrowth@IUF*	Human 3D neurosphere	(Klose et al. 2021)
Firing/Network formation		
- acute neuronal firing@USEPA	Rat primary cortical	(Behl et al. 2015)
- network formation@USEPA	Rat primary cortical	(Frank et al. 2017)
Behavior		
- behavior@Biobide	Zebrafish	(Quevedo et al. 2019)
- behavior@OregoneStateU	Zebrafish	(Hagstrom et al. 2019)
- behavior@UCDavis	Zebrafish	(Dach et al. 2019)

DNT- Data Integration and Visualization Enabling Resource

What can you do in DNT-DIVER?



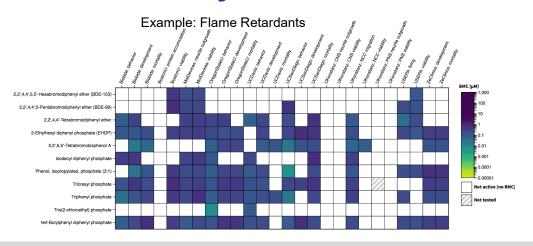
Compare activity of compounds/classes across multiple assays



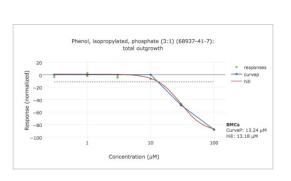
DNT- Data Integration and Visualization Enabling Resource

What can you do in DNT-DIVER?

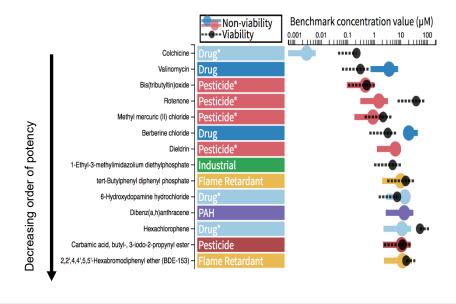
Compare activity of compounds/classes across multiple assays



Compare activity of compounds within an assay



DNT- Data Integration and Visualization Enabling Resource


What can you do in DNT-DIVER?

Compare activity of compounds/classes across multiple assays

Individual dose-response curves

Compare activity of compounds within an assay

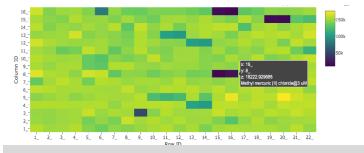
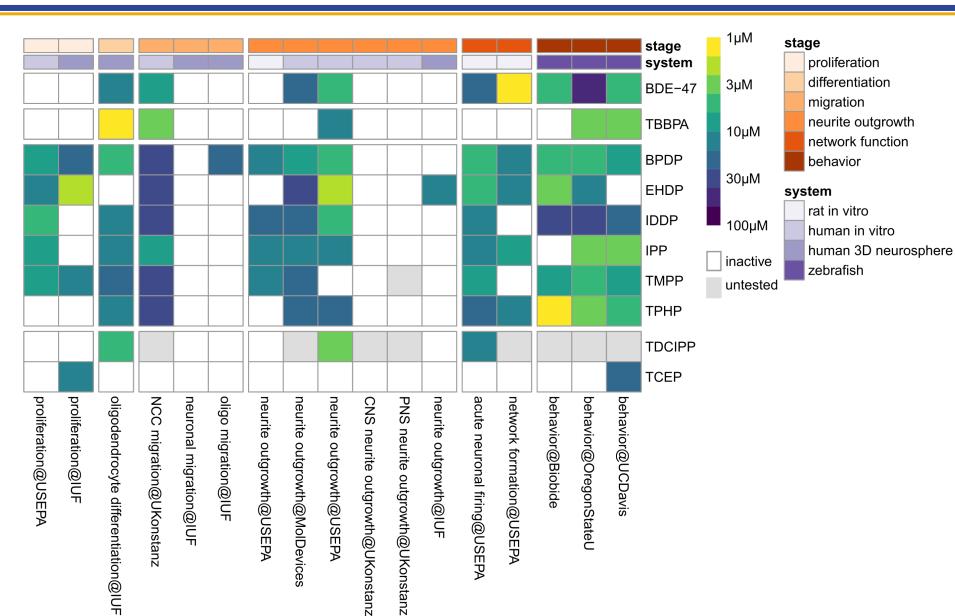



Plate and well level information



Control variability in assay

https://sandbox.ntp.niehs.nih.gov/neurotox/

Summary of Findings

Summary of Findings

stage

proliferation

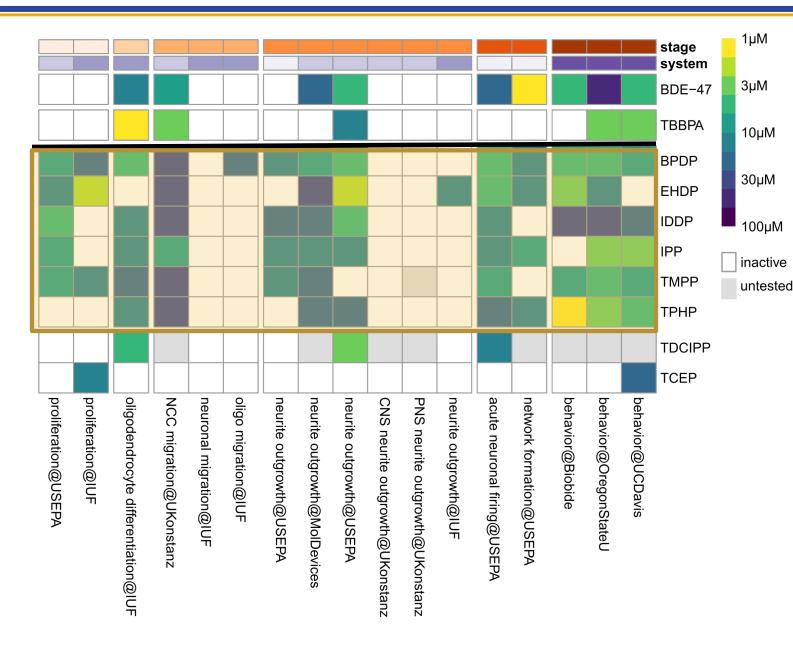
migration

behavior

rat in vitro

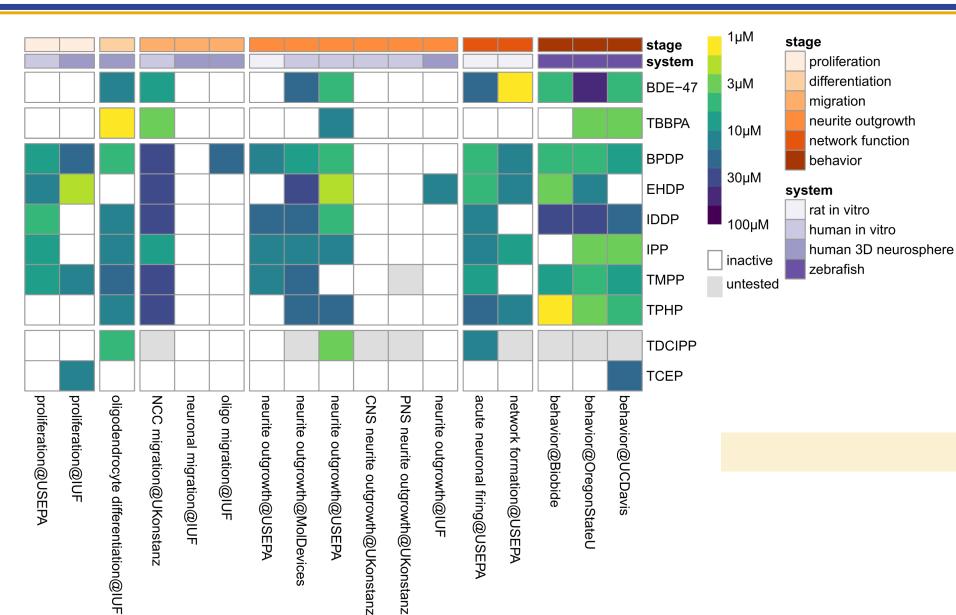
zebrafish

human in vitro

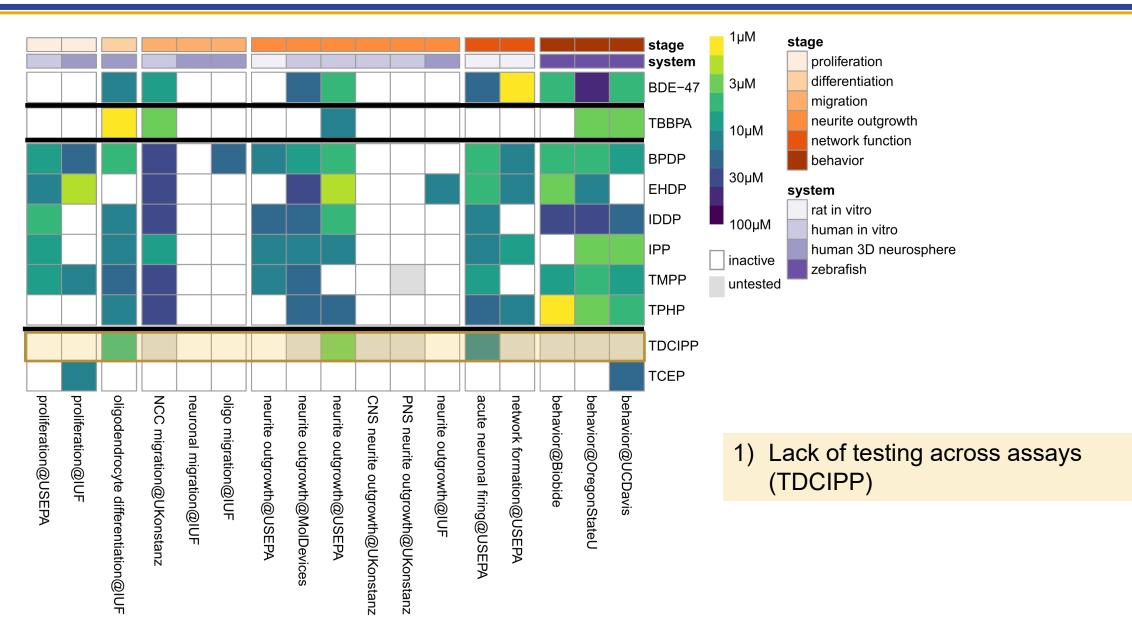

human 3D neurosphere

system

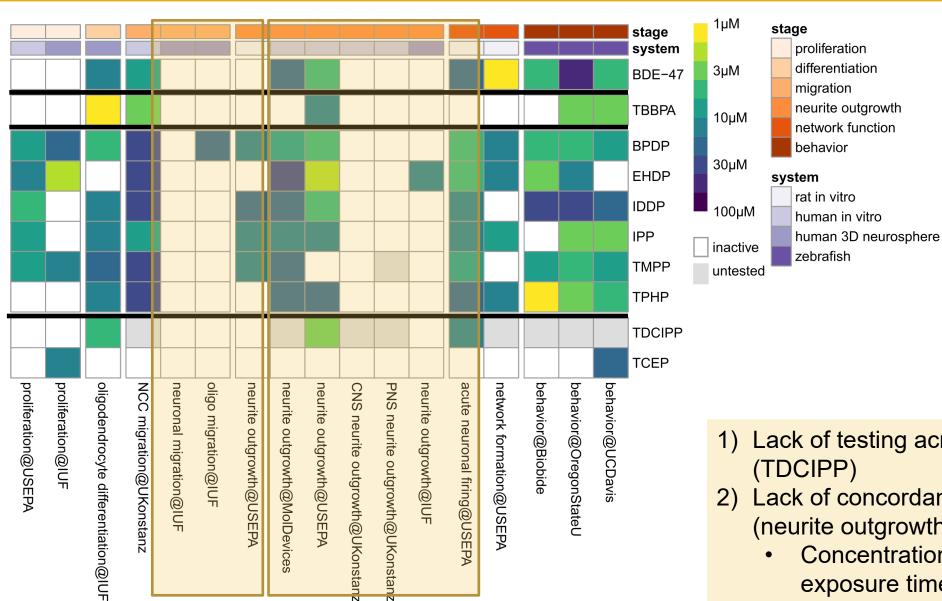
differentiation


neurite outgrowth

network function



- Overall, as a class the aromatic OPFRs appear to be active in a variety of DNT assays
- 2) Show comparable activity to other classes



- 1) Lack of testing across assays
- 2) Lack of concordance within assays (neurite outgrowth, migration)
 - Concentrations, models, exposure time

stage

proliferation differentiation

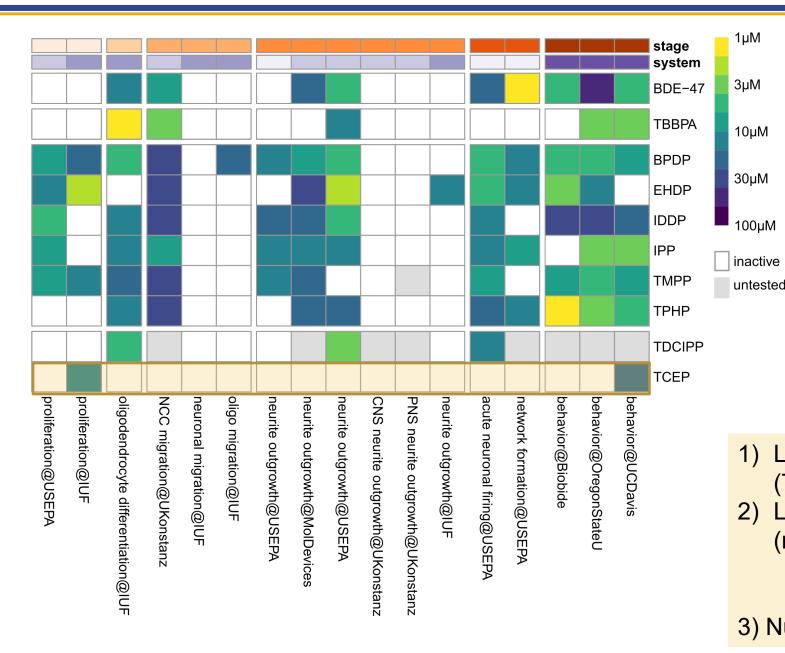
migration

behavior

rat in vitro

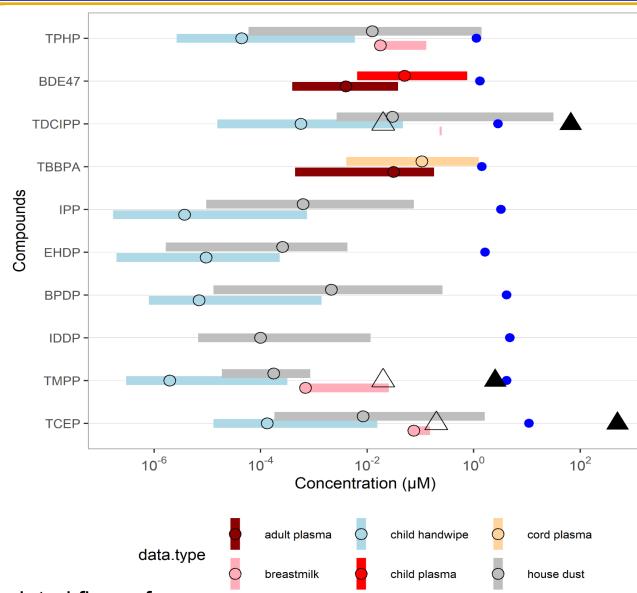
zebrafish

human in vitro

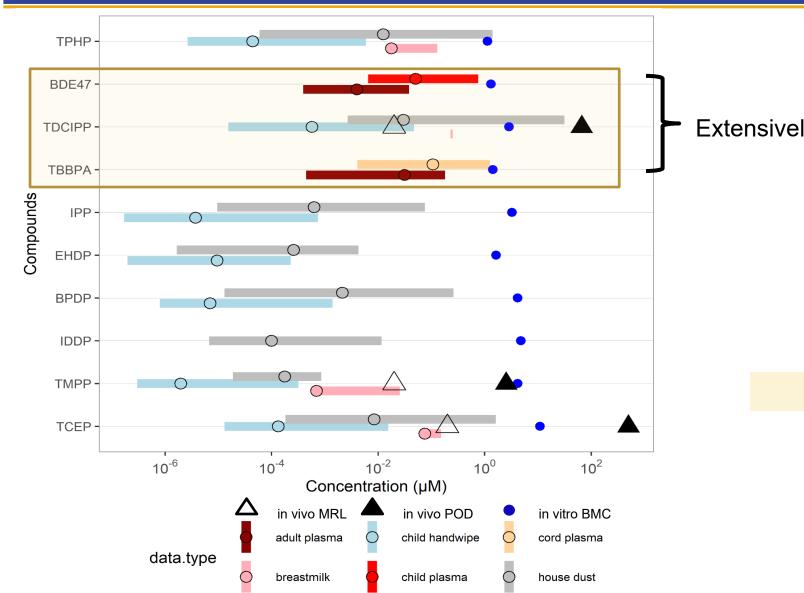

human 3D neurosphere

system

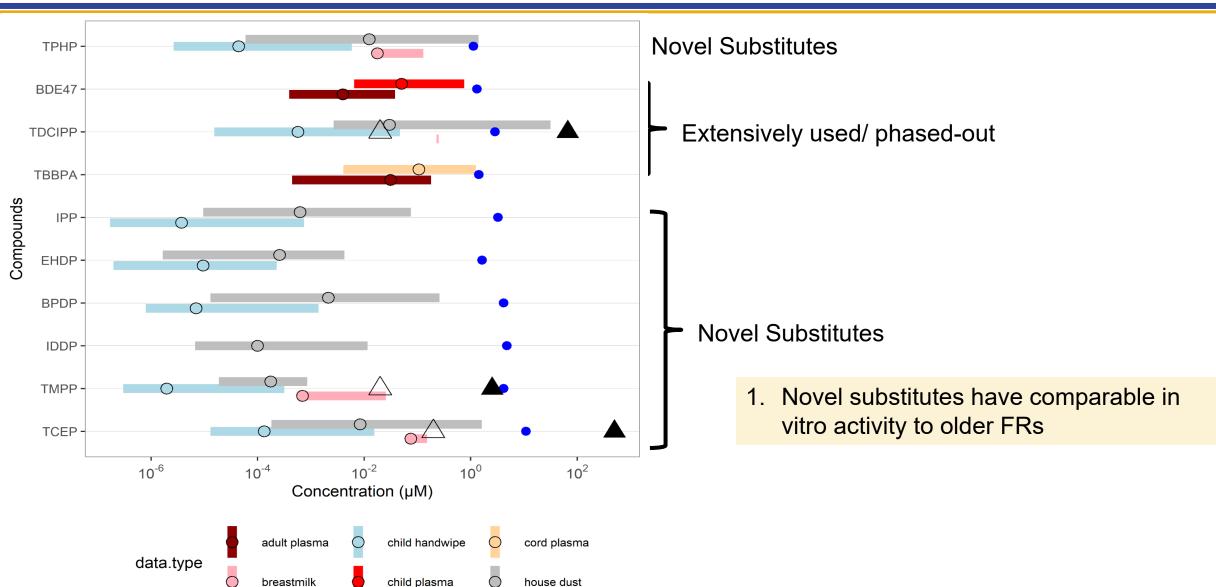
100µM

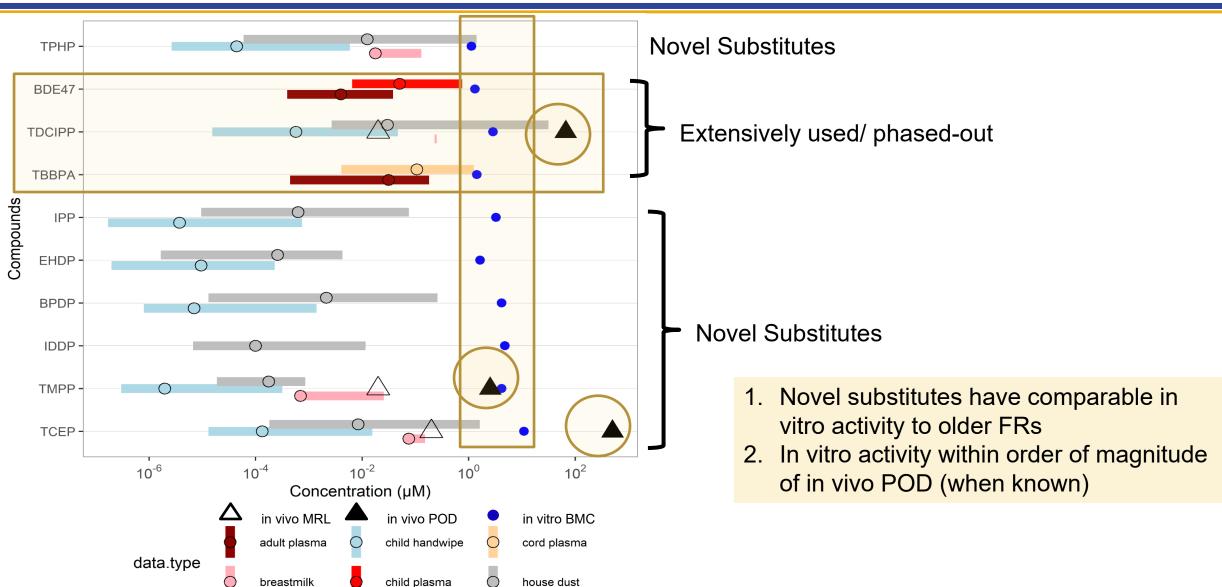

neurite outgrowth

network function

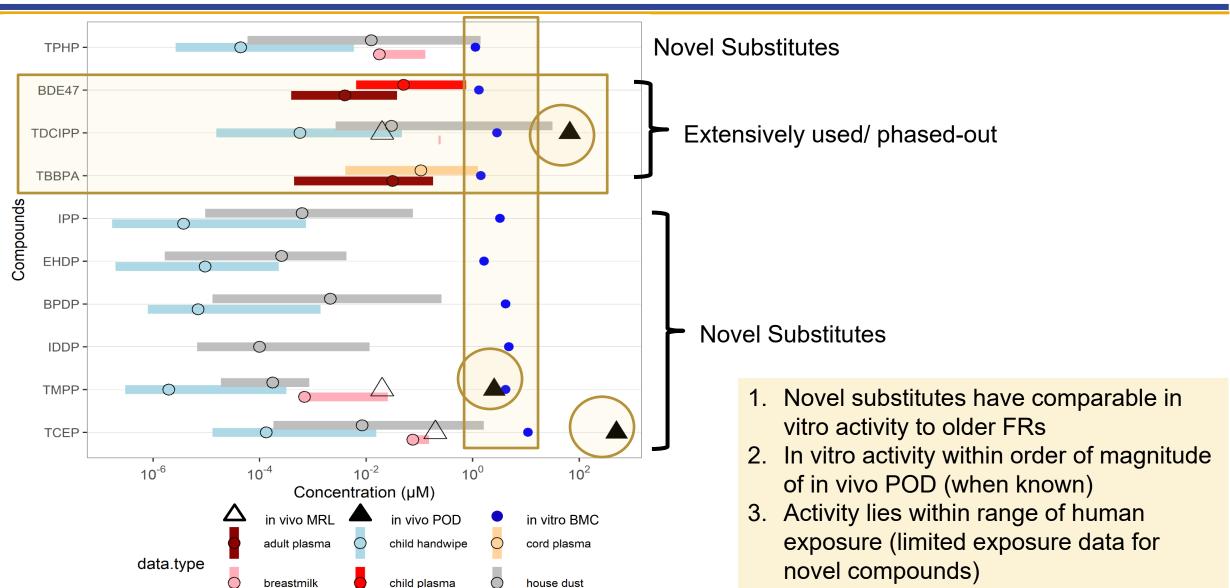


- 1) Lack of testing across assays (TDCIPP)
- 2) Lack of concordance within assays (neurite outgrowth, migration)
 - Concentrations, models, exposure time
- 3) Number of hits (TCEP)





Extensively used/ phased-out



Consideration for further development of AOP

GLUTAMATE

Cellular and Organ Effects

Monolayer in vitro cell

- · Reduced response to glutamate 1
- 3D in vitro cell culture · Alternation in expression
- of glutamate NMDA receptor 6 NAA and L aspartic
- decrease 6
- · Reduced levels of glutamate (
- Rodent in vivo
 - . Disruption of NAA. creatine and lactic acid 7
 - · Increased levels of

- · Disruption of glutamate
- glutamate 8*
- Neuronal death 7,8*

Organism Effects

Rodent in vivo · Impaired learning and

Adverse impacts on cognitive developm including early langu ability, and fine moto

Human Effects†

- Adverse behavioral development includi withdrawal, attention problems, depressio hyperactivity, and aggression 3
- Decrease in IQ and working memory 4
- Social behavioral problems including l responsible behavio and more externalizi behaviors:

Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate **Ester Flame Retardants and Plasticizers**

Heather B. Patisaul, Mamta Behl, 2,3 Linda S. Birnbaum, 2,3,4 Arlene Blum, 5,6 Miriam L. Diamond, 7 Seth Rojello Fernández, 5 Helena T. Hogberg, Carol F. Kwiatkowski, 5,9 Jamie D. Page, 10 Anna Soehl, 5 and Heather M. Stapleton 4

Patisaul et al., 2021 EHE

GABA (GAMMA-AMINOBUTYRIC ACID)

Cellular and Organ Effects

- Monolayer in vitro cell culture
 - . Inhibition of GABA R9
- 3D in vitro cell culture
- Decrease in genes involved in GABA production and
- · Decrease in GABA
- Zebrafish
- Altered levels of GABA neurotransmitter
- Rodent in vivo
- GABA antagonist 13* · Disruption of GABA neurotransmitter 78

Organism Effects **Zebrafish**

- Hyperactivity¹
- Rodent in vivo · Impaired learning and
 - · Increased ambulatory behavior?

Human Effects†

- · Adverse impacts on cognitive developme including early langu ability, and fine motor
- · Adverse behavioral development includi withdrawal, attention problems, depressio hyperactivity, and aggression 3
- Decrease in IQ and working memory 4
- problems including l responsible behavio and more externalizi behaviors 5

INFLAMMATION, GLIA ACTIVATION AND OXIDATIVE STRESS

Cellular and Organ Effects

- Monolayer in vitro cell
 - · Increased glia/neuro ratio1 Inflammatory response?
- 3D in vitro cell culture
- Gliosis/activated astrocytes 3

· Increased cytokine release Zebrafish

- Oxidative stress⁴
- · Increased GFAP levels · Decreased histamine evels 4.5

- Rodent in vivo Oxidative stress 7.8
- Microglia mediated inflammation²
- Increase in proinflammatory cytokines?

Organism Effects Human Effects†

Zebrafish

· Altered locomotor behavior 6

Adverse impacts on cognitive development, including early language ability, and fine motor

- Adverse behavioral development including withdrawal, attention problems, depression. hyperactivity, and aggression 10
- · Decrease in IQ and working memory
- · Social behavioral problems including less responsible behavior. and more externalizing

Example of using KEs + underlying mechanistic data in the absence of MIEs

Organism Effects

Vulnerability to

in females 14

Rodent in vivo

behavior 10-13

· Sex differences in

activity and anxiety

anxiety-like behavior

Zebrafish

Human Effects†

Cellular and Organ Effects Monolayer in vitro cell

ENDOCRINE DISRUPTION

- · Antagonist and/or agonist for human hormone receptors 1,2
- Incresed estradiol and testosterone levels²
- Upregulation of genes involved in thyroid
- synthesis : • PPARV1 agonist 4-6

Zebrafish

- Thyroxine and T3 decreased in plasma
- Increase in T3 and T4³ · Alteration of steroidogenesis, and estrogen metabolism
- · Alteration in genes involved in thyroid metabolism³

Rodent in vivo

- · Altered gene expression linked to endocrine disruption⁸
- · Increased serum thyroxine eve s 9,10 Endocrine disruption⁵

Human Effects Altered levels of TSH¹¹ Thyroid hormone disruption 16

· Disruption of sex steroids and sex steroid binding globulins 17

OTHER NEUROTRANSMITTERS

Cellular and Organ Effects Monolayer in vitro cell

- 2D: Increase in differentiation of dopaminergic
- neurons 14 (S) 3D in vitro cell culture Decrease in dopamine neurotransmitter 6
- Zebrafish
- Dopamine levels decrease 10 Dopamine and dopamine signaling related genes
- decreased 15 · Decreased serotonin and histamine levels 10
- Rodent in vivo
- Dopamine signaling altered 131 · Disruption in serotonin
- pathways 16,1 Serotonin levels increased

Organism Effects Zebrafish

- · Vulnerability to anxiety-like behavior potentially due to
- decrease in dopamine Rodent in vivo · Increased ambulatory

behavior 13

Human Effects†

skills

- Adverse impacts on cognitive developme including early langu ability, and fine moto
- Adverse behavioral development includi withdrawal, attention problems, depression hyperactivity, and aggression 3
- Decrease in IQ and working memory 4
- Social behavioral problems including l responsible behavio and more externalizi behaviors:

- Cellular and Organ Effects Monolayer in vitro cell culture
 - . Decrease in neurite outgrowth 13,14,15
 - · Decreased neuronal
 - network activity 14
- · Cytotoxic to neural cells S 3D in vitro cell culture
- · Decrease in expression of neurite skeleton genes 3 3D: Decreased expression of genes involved in synaptogenesis 3
- Zebrafish

altered 5.

· Decrease in genes involved in cytoskeletor organization 5.0 · Synaptogenesis marker

Organism Effects

IEURONAL MORPHOLOGY AND FUNCTION

Zebrafish · Altered locomotor behavior 5,6,18,1

- Adverse impacts on cognitive development, including early language ability, and fine motor skills
 - Adverse behavioral development including withdrawal, attention problems, depression, hyperactivity and
 - aggression 10 · Decrease in IQ and working memory 1
 - · Social behavioral problems including less responsible behavior. and more externalizing behaviors 12

Conclusions Case Study

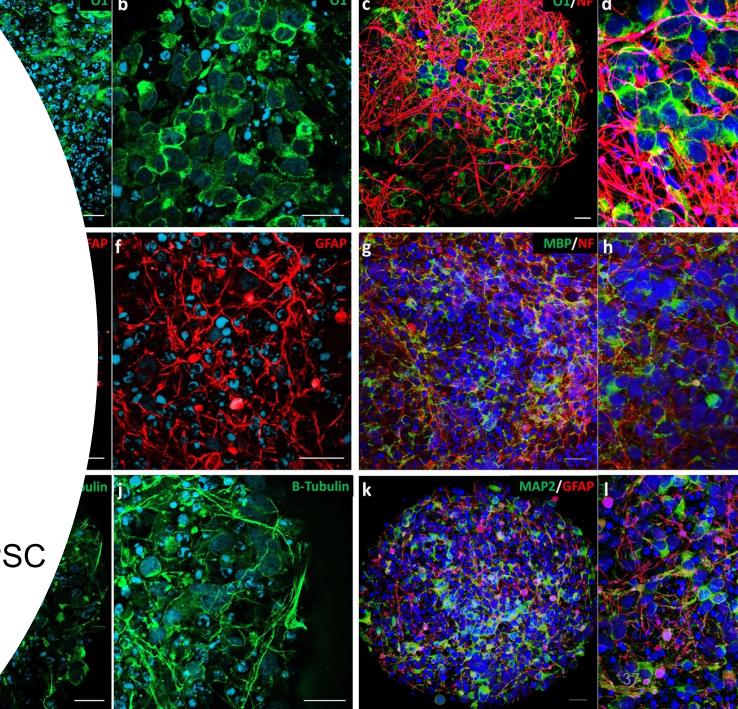
- Overall, evidence available and the approach taken in this IATA case study allowed to achieve an acceptable level of certainty in prioritization of compounds for further testing
- It also allowed for DNT hazard identification and characterization of the OPFRs which was one of the purposes of the assessment.
- The analysis could likely be used by organizations like the CPSC to prioritize compounds for further testing and use the mechanistic data generated here as weight of evidence.

Reduce uncertainty levels

- Anchor data to AOPs
- Confirm IVIVE models with in vivo data
- Harmonization of protocols
- Transferability of assays
- Understand bioavailability in the different assays
- Explore ways of weighting the different assays
 - How many assays need to be positive for different regulatory purposes?
 - Should assays with higher biological activity be given more weight?
- Develop assays for key events currently missing
 - E.g., Myelination, differentiation and proliferation of astrocytes and microglia, ontogeny of neurotransmitters and receptors

Human iPSC-Derived Neural Model

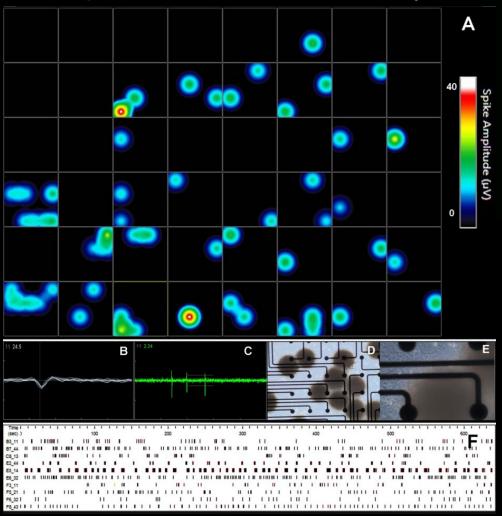
Many of the major cell types of the CNS

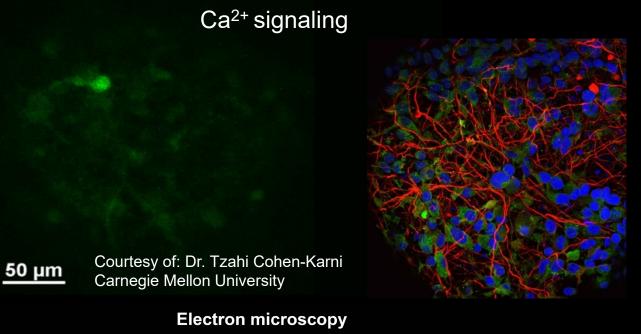

Microglia can be added

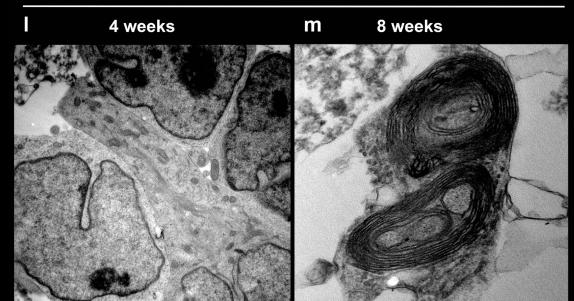
350-500 μ m diameter

Reproducible in size and cell composition

Shown critical elements of neural development


Genetic background from patient iPSC




Pamies et al., 2018, Tox. Appl. Pharmacol.

Functional neurons and glial cells

Micro-electrode arrays to measure spontaneous electrical activity

Pamies et al. 2017, ALTEX

Ongoing Work at DNTP

Stakeholders nominated chemical library

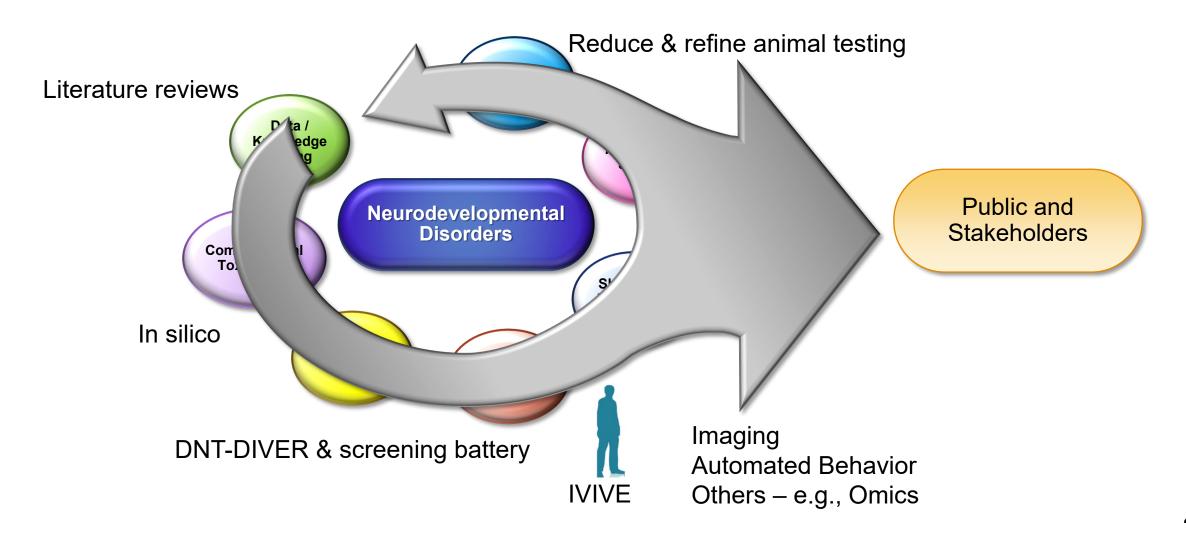
Selection Criteria

- Evidence of DNT in vivo
- Known human exposure
- Guideline study complete, lacking in vitro
- Suggested by multiple stakeholders
- Incomplete in vitro battery data

Phase 1: 115 chemical set
Currently tested in the battery in the
individual labs

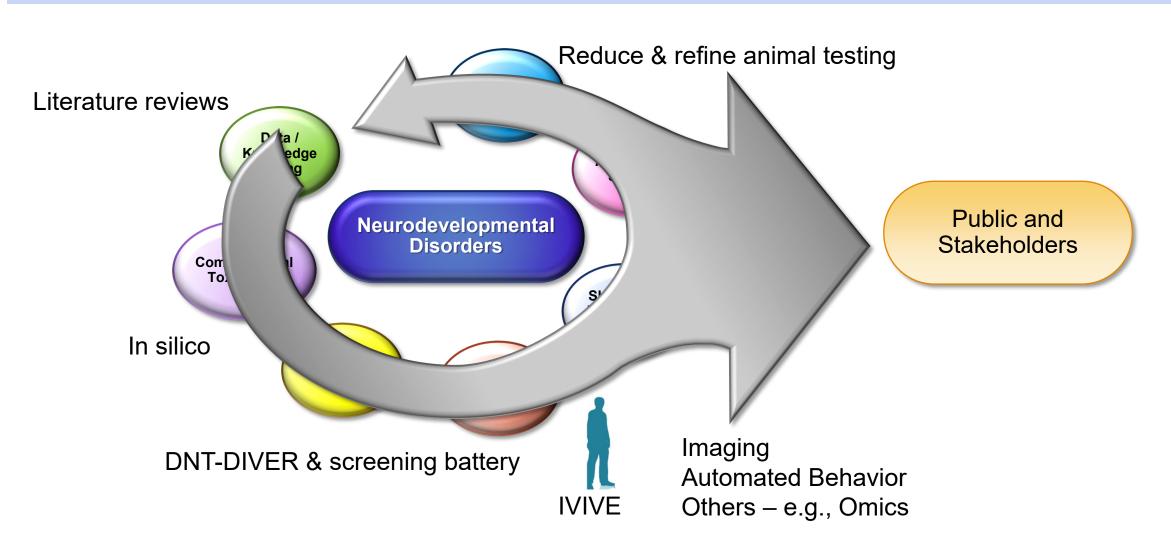
Assay development in vitro and in vivo

> Environ Health Perspect. 2021 Apr;129(4):47015. doi: 10.1289/EHP8314. Epub 2021 Apr 30.


Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds

Gabrielle M Childers ¹, Caroline A Perry ¹, Barbara Blachut ¹, Negin Martin ², Carl D Bortner ³, Stella Sieber ⁴, Jian-Liang Li ⁵, Michael B Fessler ⁶, G Jean Harry ¹

Linking mechanistic bioactivity to clinical end-points


DNT HEI in DNTP's Translational Toxicology Pipeline

DNT HEI in DNTP's Translational Toxicology Pipeline

Ultimate goal is to more effectively predict DNT for unknown environmental chemicals to prevent neurodevelopmental disorders

The NICEATM Group

