
• The database of 96 substances included 69% (66/96) human sensitizers and 
31% (30/96) human nonsensitizers (Figure 2a).

• We divided the substances into test and training sets with similar characteristics 
(Figures 2b and 2c). We used the training set to build models to predict human 
hazard and the test set to test the models.

Figure 2. Proportion of Human Sensitizers and Nonsensitizers

• The National Toxicology Program Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) and the ICCVAM Skin Sensitization Working 
Group compiled non-animal (in chemico and in vitro) test data and human skin 
sensitization hazard data (sensitizer or nonsensitizer) for 96 substances. 

• The in chemico and in vitro data were obtained from methods recommended for use 
in a weight-of-evidence approach (OECD 2015a,b,c). The methods align with key 
events in the adverse outcome pathway for skin sensitization (OECD 2012)
(Figure 1).

– The direct peptide reactivity assay (DPRA) measures covalent interaction 
with proteins (Key Event 1).

– The KeratinoSens™ (Givaudan) assay measures activation of genes, 
controlled by the antioxidant response element (ARE), that protect against 
oxidative stress in keratinocytes (Key Event 2).

– The human cell line activation test (h-CLAT) measures activation and 
mobilization of dendritic cells in the skin (Key Event 3).

– For DPRA, we evaluated both binary (sensitizer/nonsensitizer) and 
quantitative (average cysteine depletion, average lysine depletion, and 
average cysteine and lysine depletion) results, whereas for KeratinoSens and 
h-CLAT, we evaluated only binary results because quantitative data were 
available for only a small number of chemicals.

Figure 1. Adverse Outcome Pathway for Skin Sensitization Produced 
by Substances That Covalently Bind to Proteins

• Additional data compiled for the 96 substances included:

– Six physicochemical properties that may impact skin absorption (Table 1)

– Binary in silico predictions of skin sensitization hazard produced using a 
read-across approach with QSAR Toolbox (OECD 2014), a software package 
developed by the Organisation for Economic Co-operation and Development 
(OECD).

Table 1. Ranges of Physicochemical Properties for 96 Substances

• To predict human outcomes, the in chemico, in vitro, and in silico data and 
physicochemical properties were integrated using a test battery approach and two 
machine learning approaches, logistic regression (LR) and support vector machine 
(SVM).
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Comparison of the Machine Learning Models with Other Approaches
• In addition to the machine learning models, we evaluated two test battery approaches 

for prediction of human skin sensitization hazard:

– Test Battery 1: If any test method classified the substance as a sensitizer 
(i.e., positive), the substance is classified as a sensitizer.

– Test Battery 2: If two or more tests classified the substance as a sensitizer 
(i.e., positive), the substance is classified as a sensitizer.

• For comparison with the results from the machine learning methods, Table 3 shows 
performance statistics for prediction of human skin sensitization hazard for the test set 
of 24 substances using (1) the individual non-animal methods, (2) the two test battery 
approaches, and (3) the LLNA.

Table 3. Performance of Individual Methods and the LLNA for 
Predicting Human Skin Sensitization Hazard for the Test Set of 
24 Substancesa

• Figures 4 and 5 show the accuracies of the machine learning models using Variable 
Groups A–G listed in Table 2.

– For the LR models, all seven variable groups with log P produced higher 
accuracy for the test set of 24 substances than those with all six 
physicochemical properties (Figure 4). 

– For the SVM models, all seven variable groups with log P produced 
equivalent or higher accuracy for the test set compared to those with all six 
physicochemical properties (Figure 5). 

Figure 4. Comparison of Accuracy for Log P vs Six Physicochemical 
Properties Using Logistic Regressiona

Figure 5. Comparison of Accuracy for Log P vs Six Physicochemical 
Properties Using Support Vector Machinesa

• Because all variable groups with log P had equivalent or higher accuracy than those 
with all six physicochemical properties, subsequent models included only log P if 
physicochemical properties were included.

ResultsDefinition of Training and Test Sets

• The LR and SVM machine learning models performed better in predicting human skin 
sensitization hazard (accuracy ≥ 92% for the highest performing models) than 
individual non-animal methods (accuracy ≤ 79%) and test batteries (accuracy = 75%). 
The machine learning models also achieved a better balance between sensitivity and 
specificity.

• Models using only log P performed better than analogous models with all six 
physicochemical properties.

• The highest performing LR and SVM models had the same performance using the 
same three variable groups. Accuracies were ≥92% for the training and test sets. 

‒ The models using the variable group with all of the non-animal test methods 
(Avg.Lys.Cys from DPRA + KeratinoSens + h-CLAT + QSAR Toolbox) + 
log P achieved the highest accuracy (99% for the training set and 96% for the 
test set) (Table 4). 

‒ Two variable sets used a combination of two or three non-animal test 
methods (Avg.Lys.Cys from DPRA, h-CLAT, or KeratinoSens) with QSAR 
Toolbox and without any physicochemical properties. The models that used 
Avg.Lys.Cys + h-CLAT + QSAR Toolbox would save resources because they 
require only two non-animal test methods. 

‒ The LR and SVM models with these three variable groups correctly classified 
all prehaptens and prohaptens in the dataset.

• The in chemico/in vitro/in silico methods were more informative than physicochemical 
properties (Figures 6-8).

• Future work will explore the use of continuous variables for h-CLAT and KeratinoSens
for the development of models to predict skin sensitization potency. 

Conclusions
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• A total of 13 variables (non-animal test data and physicochemical characteristics) 
were available for predicting human skin sensitization hazard. A random forest 
analysis (Diaz-Uriarte 2007; Hao et al. 2011) was conducted to assess the relative 
importance of the variables (Figure 3).

Figure 3. Ranking of Variable Importance by Random Forest 
Algorithm

Analysis of Variable Importance 

• The five training set substances and two test set substances misclassified by any of 
the three LR and SVM models with the highest performance are shown in Table 5. 
The results from the individual non-animal methods are shown for reference.

– In the training set, there were four false negatives and one false positive.

– Although the in chemico and in vitro methods do not consistently yield correct 
classifications for prehaptens, which must be oxidized to produce skin 
sensitization, or prohaptens, which must be metabolized to produce skin 
sensitization, the machine learning methods overcome this limitation. None of 
the four false negatives were prehaptens or prohaptens.

 The two prehaptens, 10 prohaptens, and two pre/prohaptens in the 
training set were correctly classified.

– In the test set there was one false negative and one false positive. The false 
negative was not a pre- or pro-hapten.

 The one prehapten, four prohaptens, and one pre/prohapten in the 
training set were correctly classified, which overcomes a limitation of 
the in chemico and in vitro methods.

• KeratinoSens correctly classified more misclassified substances (4) than any of the 
other test methods (1-2 substances).

Table 5. Misclassified Substances for the Highest Performing 
Machine Learning Modelsa

Abbreviations: Avg.Lys.Cys = average depletion for lysine and cysteine peptides from the DPRA; DPRA = direct peptide 
reactivity assay; log P = log octanol:water partition coefficient; h-CLAT = human cell line activation test; NEG = negative; 
POS = positive; Toolbox = read-across using QSAR Toolbox.

a Shaded cells indicate results that are discordant with the reference values. 

Misclassified Substances

Abbreviations: avg.Lys.Cys = average percent depletion for lysine and cysteine peptides from the DPRA; 
BP = boiling point; Cys = average percent depletion of cysteine peptide from the DPRA; DPRA = direct peptide 
reactivity assay binary result; hCLAT = human cell line activation test; %IncMSE = percent increase in mean 
squared error; Keratino = KeratinoSens assay; LogP = log octanol:water partition coefficient; LogS = log water 
solubility; LogVP = log vapor pressure; Lys = average percent depletion of lysine peptide from the DPRA; 
MP = melting point; MW = molecular weight; OECD = read-across prediction from OECD QSAR Toolbox.

Human 
Sensitizers

69%

Human 
Nonsensitizers

31%

Physicochemical Property Range of Values
Octanol:water partition coefficient -8.28 to 6.46a

Water solubility (M) -6.39 to 1.92a

Vapor pressure (mm Hg) -28.47 to 5.89a

Melting point (°C) -148.5 to 288.0 
Boiling point (°C) -19.1 to 932.2 
Molecular weight (g/mol) 30.03 to 581.57 

a Range for log10 of these measurements.
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Figure 2a Database (n=96) Figure 2b Training Set (n=72) Figure 2c Test Set (n=24)

Assays

Properties

Test Method or Model
Training Set Test Set

2-Methoxy-4-
methylphenol

Streptomycin 
sulfate Penicillin G Sulfan-

ilamide Benzocaine Pentachloro
-phenol Coumarin

Human Reference Result NEG POS POS POS POS NEG POS

DPRA POS NEG POS NEG POS POS NEG

KeratinoSens NEG NEG NEG NEG POS NEG POS

h-CLAT POS NEG POS NEG POS POS NEG

Toolbox POS POS NEG NEG NEG POS NEG
All non-animal methods + 
Log P (A) NEG POS POS NEG POS NEG NEG

Avg.Lys.Cys + KeratinoSens + 
h-CLAT + Toolbox (I) POS NEG NEG NEG NEG POS NEG

Avg.Lys.Cys + h-CLAT + 
Toolbox (K) POS NEG NEG NEG NEG POS NEG

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; 
LLNA = murine local lymph node assay; Toolbox = read-across using QSAR Toolbox.
a Nine nonsensitizers and 15 sensitizers. 

• We defined twelve variable groups, A–L in Table 2, as follows:
– Groups A–G used different combinations of the non-animal methods with 

either log P, the most important physicochemical property according to the 
random forest analysis, or all six physicochemical properties.

– Group H used log P or the six physicochemical properties only.
– Groups I-L used different combinations of the non-animal methods without 

any of the physicochemical properties.
• The machine learning models were constructed by applying one of two approaches, 

LR or SVM, to the data for training set of 72 substances for each of the variable 
groups A–L (Table 2). The models were then tested by assessing performance for 
predicting human skin sensitization hazard using data for the test set of 24 
substances.

Table 2. Variable Groups Used to Build Models for Predicting Human 
Skin Sensitization Hazard

Model Building

Method Accuracy (%) Sensitivity (%) Specificity (%)

DPRA 71 73 67
KeratinoSens 63 60 67
h-CLAT 75 80 67
Toolbox 71 73 67
Battery 1 (≥ 1 method positive) 75 100 33
Battery 2 (≥ 2 methods positive) 75 87 56
LLNA 88 100 67

• Figures 6-8 compare the accuracy, sensitivity, and specificity of the SVM and LR 
models for 12 variable groups (A–L in Table 2).

– The three variable groups with the highest performance for the test set were 
the same for the LR and SVM models. For all of these, accuracy was ≥ 92% 
(Figure 6), sensitivity was 93% (Figure 7), and specificity was ≥ 89% 
(Figure 8).

 Variable Group A: all non-animal tests + log P

 Variable Group I: Avg.Lys.Cys + KeratinoSens + h-CLAT + QSAR 
Toolbox

 Variable Group K: Avg.Lys.Cys + h-CLAT + QSAR Toolbox

– The training set performance of these variable groups were also the same for 
the LR and SVM models (Table 4).

– The variable group with the worst performance was H, which included only 
the six physicochemical properties. Accuracy was ≤ 58% (Figure 6), 
sensitivity was 67% (Figure 7), and specificity was ≤ 44% (Figure 8).

Figure 6. Accuracy for Machine Learning Modelsa

Figure 7. Sensitivity for Machine Learning Models

Figure 8. Specificity for Machine Learning Modelsa

Table 4. Highest Performing Machine Learning Models: Performance 
Statistics for Test and Training Setsa

Abbreviations: Avg.Lys.Cys = average depletion for lysine and cysteine peptides from the direct peptide 
reactivity assay; h-CLAT = human cell line activation test; log P = log octanol:water partition coefficient; 
LR = logistic regression; SVM = support vector machines; Toolbox = read-across using QSAR Toolbox. 
a Table reports statistics from the best performing variable groups for each machine learning approach. 
b The training set of 72 substances contains 51 human sensitizers and 21 nonsensitizers. The test set of 24 
substances contains 15 human sensitizers and nine nonsensitizers (Figure 2). 

Performance Statistics for the Machine 
Learning Models• Allergic contact dermatitis (ACD) is an adverse skin reaction, characterized by 

localized redness, swelling, blistering, or itching, that can develop after repeated 
direct contact with a skin sensitizer.

• U.S. regulatory agencies establish hazard categories to determine appropriate 
labeling to warn consumers and workers of potential skin sensitization hazards. 
Historically, these categories are assigned based on the results of animal tests.

• Since its inception, the Interagency Coordinating Committee on the Validation of 
Alternative Methods (ICCVAM) has given a high priority to replacing, reducing, and 
refining the use of animals for skin sensitization testing. 

• Skin sensitization is a complex process, and it is likely that no single non-animal test 
can replace animal use for this testing. A more promising approach involves 
integrating data from several non-animal methods using an integrated decision 
strategy (IDS). 

• This poster describes an IDS developed by ICCVAM that integrates non-animal skin 
sensitization data and physicochemical properties to identify potential human skin 
sensitizers. 

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; LLNA = murine 
local lymph node assay.

Figure adapted from OECD (2012). While the figure shows the assays aligned only to specific key events, a 
positive response in any of these assays requires completion of all prior events in the pathway.

Introduction

Abbreviations: Avg.Lys.Cys = average depletion for lysine and cysteine peptides (DPRA); DPRA = direct 
peptide reactivity assay; h-CLAT = human cell line activation test; log P = log octanol:water partition coefficient; 
QSAR Toolbox = read-across prediction from OECD QSAR Toolbox.

Group
Variables Included

Avg.Lys.Cys from 
DPRA KeratinoSens h-CLAT QSAR Toolbox Log P or Six Physicochemical 

Properties 
A
B
C
D
E
F
G
H
I
J
K
L

a Data for test set of nine nonsensitizers and 15 sensitizers. Variable groups are defined in Table 2.

Logistic Regression

Logistic Regression

Logistic Regression

Support Vector Machine

Support Vector Machine

Support Vector Machine

a Data for test set of nine nonsensitizers and 15 sensitizers. Variable groups are defined in Table 2.

Variable Groupa Data Setb
LR 

Accuracy 
(%)

SVM 
Accuracy 

(%)

LR 
Sensitivity 

(%)

SVM 
Sensitivity 

(%)

LR 
Specificity 

(%)

SVM 
Specificity 

(%)

All non-animal methods + Log P (A)
Training 99 99 98 98 100 100

Test 96 96 93 93 100 100

Avg.Lys.Cys + KeratinoSens + h-CLAT + 
Toolbox (I)

Training 93 93 92 92 95 95

Test 92 92 93 93 89 89

Avg.Lys.Cys + h-CLAT + Toolbox (K)
Training 93 93 92 92 95 95

Test 92 92 93 93 89 89

Log P Six Physicochemical Properties

Log P Six Physicochemical Properties
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