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• Physiologically based pharmacokinetic (PBPK) models rely on chemical-
specific parameters to predict internal concentrations or generate in vitro to in 
vivo extrapolation (IVIVE) estimates.

• Input parameters can be empirically measured or estimated through in silico 
approaches such as quantitative structure-activity relationship (QSAR) models.

• Uncertainty and variability are inherent in both empirical and in silico 
parameters, as experimental variability (e.g. interlaboratory effects) impacts 
empirical measures as well as in silico predictions trained with empirical data.

• This uncertainty in input parameters propagates through PBPK calculations to 
result in uncertainty in model predictions.

• This study evaluated how parameter uncertainty impacts PBPK predictions 
using the OPEn quantitative structure-activity/property Relationship App 
(OPERA v2.7), which provides QSAR parameter predictions as well as 
estimates of uncertainty in the form of a range around each prediction value.   

Introduction

Methods

Results

• Quantification of uncertainty in PBPK outputs from input parameter variability 
can help researchers characterize confidence in model results.

• Estimating the variability and uncertainty inherent in empirically measured and 
QSAR predicted parameters, then using the ranges of parameters to generate 
prediction ranges is a way to describe possible PBPK outcomes based on the 
best available knowledge. 

• The case study in this work demonstrates how the QSAR parameter prediction 
ranges generated by OPERA can be used with this approach to characterize 
the effects of input parameter variability. 

• The magnitude of input parameter effects can vary with other parameter 
values. For example, both Permethrin and Captan have ranges of fraction 
unbound values near zero, but Captan has substantially higher plasma AUC 
values due to its lower intrinsic clearance and LogP parameters. 

• Quantifying how input parameter uncertainty propagates through PBPK models 
can inform more conservative approaches to applications such as IVIVE.

Discussion

• Experimental variability results in uncertainty that 
is inherent in both empirical and in silico predicted 
PBPK input parameters.

• Calculating ranges of PBPK model outputs based 
on input parameter ranges can characterize the 
effects of input parameter variability.

• Characterization of parameter variability facilitates 
better informed interpretation of model results. 

Take-Home Points

Case Study
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• Three pesticides were selected that represented diversity in structure and entire QSAR prediction range (see table below).
• In vitro bioactivity data used for IVIVE (AC50 values) were obtained from ICE.
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• Can be empirical or predicted: we  
used QSAR parameters predictions 
generated by OPERA v2.7 
(Mansouri et al. 2018).

• OPERA provides a confidence 
range around each prediction as an 
estimate of uncertainty.

• Parameters included intrinsic 
clearance, fraction unbound, pka, 
logP, and Henry's Law constant.

• PBPK simulations were run using the 
solve_pbtk model from the httk R 
package (Pearce et al. 2017).

• Modeling simulated a 1 mg/kg dose 
via oral gavage in humans.

• Pharmacokinetic profiles and area 
under the curve (AUC) were 
recorded for plasma.

• Parameters were systematically 
tested to identify the sets that 
maximized and minimized PBPK 
plasma concentration predictions.

• Plasma concentrations were 
highest when all parameter 
values were minimized.

• QSAR parameter uncertainty 
implications for IVIVE were examined 
by applying the full range of maximum 
plasma concentrations (Cmax) to 
calculate equivalent administered 
dose (EAD) for in vitro data from the 
Integrated Chemical Environment 
(ICE; Abedini et al. 2021).. 

Input Parameters PBPK Simulation

PBPK Uncertainty IVIVE Uncertainty

Pesticide Intrinsic Clearance* Fraction Unbound pKa LogP Log Henry’s Law

(+)-trans-Permethrin 
(“Permethrin”)

68.39 [57.83 : 87.59] 0.01 [0.01 : 0.01] 6.49 [6.46 : 6.54] -7.6 [-9.5 : -5.7]

Carabyl 27.27 [26.17 : 28.37] 0.69 [0.67 : 0.69] 8.1 [7.1 : 9.1] 
donor

2.35 [2.32 : 2.41] -7.8 [-8.9 : -6.7]

Captan 0.01 [0.01 : 1.98] 0.08 [0.01 : 0.18] 2.1 [-1.3 : 5.4] 
acceptor

2.80 [2.75 : 2.85] -5.4 [-6.3 : -4.5]

*QSAR parameters (range). Intrinsic clearance is in units of uL/min/10^6 hepatocytes. The other parameters are unitless.
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Fig 1: Pharmacokinetic Profiles
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Fig 2: Plasma AUC
Plasma AUC predictions based on 
OPERA predicted value (dot) and 
range (bars). 

AU
C

 (h
*µ

M
)

Prediction
Range

• Carbaryl had the narrowest range of PBPK results based on 
QSAR parameter prediction ranges, followed by Permethrin and 
Captan (Figs 1 and 2).

• Fraction unbound, intrinsic clearance, and logP were the input 
parameters with the most potential for influence on PBPK 
model outputs (e.g. Captan).

• Application of the Cmax range maximum to IVIVE calculations 
resulted in more conservative EAD estimates informed by 
QSAR prediction ranges (60.2% lower for Captan; Fig 3).  

Parameter/
condition Biochemical implication

Effect on PBPK 
plasma prediction

Fraction 
unbound

High bioavailability in plasma 
can facilitate rapid clearance

Cmax, AUC

Intrinsic 
clearance

High enzymatic activity rapidly 
clears chemical

Cmax, AUC

LogP Highly lipophilic compound 
accumulates in lipid-rich tissues

Cmax, AUC

Fig 3: IVIVE
Distributions of EAD values based on 
ICE data. Filled boxes show the effect of 
input uncertainty.
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