Measurement Assurance in a Nanocytotoxicity Assay

Elijah Petersen and John Elliott
Cell Systems Science Group
Material Measurement Laboratory
National Institute of Standards and Technology
How do we improve confidence in alternative model measurements?

• Cellular measurements are complicated
 – Cell culture, extended periods, manual
 – Manual steps in setting up experiments
 – Multiple reagents
 – Instrumentation

• How do you prove measurement quality?
What can we do to increase confidence in the measurement

• Treat the assay as a measurement process
• Add process controls as evidence that the measurement process is proceeding as expected
• Adapt the “seven basic tools for quality” to cell assays
 – Cause and effect diagram
 – Check sheet
 – Control charts
 – Histogram
 – Pareto chart
 – Scatter diagram
 – Flow chart
The importance and challenge of nanotechnology risk assessment

• Nanotechnology is expected to have a massive commercial impact

• However, measuring their potential toxicological effects is challenging
 – Many of the standard methods for dissolved chemicals require nanoparticle-specific modifications
 – Nanoparticles may cause artifacts with many assays
 – There is a huge range of nanoparticles (different sizes, coatings, chemical compositions, etc.) to test
 – Prioritization is needed for screening the potential effects and in vitro methods have been suggested for this purpose
 – But, there are disagreements among laboratories on the cytotoxic effects of many nanoparticles
NIST Role in Nano-Environmental Health & Safety

National Nanotechnology Initiative 2011 Environmental Health and Safety Research Strategy
Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements

Elijah J. Petersen,†,* Theodore B. Henry,‡,§,‖ Jian Zhao,† Robert I. MacCuspie,#,▼ Teresa L. Kirschling,○ Marina A. Dobrovolskaia,◆ Vincent Hackley,♯ Baoshan Xing,† and Jason C. White¶
Use of Cause-and-Effect Analysis to Design a High-Quality Nanocytotoxicology Assay

- Seed cells - 24 h
- Treatment with nanoparticles and chemical control - 24 h
- Remove supernatant
- Treatment with MTS reagents - 1 h
- Absorption measurement at 490 nm with plate reader
Find sources of variability in assay

1. Cell-specific issues
 - Time before Assay
 - Handling
 - Passage Seed Density
 - Media
 - Culture Conditions
 - Temperature
 - Humidity
 - CO2 Incubator
 - Cell ID
 - Cell Growth
 - Plates
 - Manufacturer

2. Pipetting
 - Between Row
 - Between Columns
 - User-Technique
 - Gradients during Pipetting
 - Calibration
 - Tips

3. Instrument-specific issues
 - Curve fitting
 - Non Linearity
 - Stray light
 - Background
 - Signal

4. Chemical Control
 - Dosing
 - Solvent control
 - Solubility
 - Purity
 - Chemical Compound

5. Assay-specific issues
 - Prep to Prep
 - Freeze/Thaw Cycle
 - Reagent
 - Kit to Kit
 - Washing Step
 - Nano Particle Interference
 - Blank

6. Nanoparticle-specific issues
 - Dosing
 - Contaminants
 - Surface react.
 - Agglo/Aggre. exper. conditions
 - Chemical Composition
 - Particle Size
 - Morphology
 - Specific Surface
 - Surface "Chemistry"

Sources of Variability

Cause and effect diagram for MTS assay
Design a new plate format with process control measurements

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.</td>
</tr>
<tr>
<td>B</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>.</td>
</tr>
<tr>
<td>D</td>
<td>.</td>
</tr>
<tr>
<td>E</td>
<td>.</td>
</tr>
<tr>
<td>F</td>
<td>.</td>
</tr>
<tr>
<td>G</td>
<td>.</td>
</tr>
<tr>
<td>H</td>
<td>.</td>
</tr>
</tbody>
</table>

- **6 (8)-channel pipette**
- **Positive Chemical Ctrl**
- **ENM test**

ENM concentration
- BG indicates best guess of ED$_{50}$ value
- 0
- 0.05 (BG)
- 0.5 (BG)
- BG
- 2 (BG)
- 4 (BG)
Results

![Graph showing relative absorbance at 490 nm vs. concentration for PS-NP First Round and PS-NP Second Round.](image-url)
Results

![Bar chart showing Coefficient of Variation (CV) for different feature numbers in Figure 3. Features 1 and 2 show a higher coefficient of variation compared to other features. Features 3, 4, 6, and 7 have a lower coefficient of variation. The chart compares the 1st Round and 2nd Round results.](image-url)
Interlaboratory comparison

- 5 national metrology institutes were involved in the interlaboratory comparison
- Experimental design:
 - Share two A549 cell lines from ATCC and EMPA
 - Serum from local provider
 - Reagents from local provider
 - Serum and serum-free tests
 - Multiple replicates
 - Share nanoparticles (+ve PS) and chemical control (CdCl₂)
Dose Response Curves NP

A549 cell-1

Laboratory:
- Consensus
- A
- B
- C
- D

Serum free

Relative absorbance at 490 nm

0 25 50 75 100

concentration of NH₂-PS NP (μg/mL)

outlier

A

A549 cell-2

Laboratory:
- Consensus
- A
- B
- C
- D

Serum free

Relative absorbance at 490 nm

0 25 50 75 100

concentration of NH₂-PS NP (μg/mL)

B

C

D

Serum

Relative absorbance at 490 nm

0 25 50 75 100

concentration of NH₂-PS NP (μg/mL)
NP EC50 values

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell Line:
- A549 - A
- A549 - B

- Looks like harmonization between the laboratories
- No cell line differences
- The serum conditions increases variability
Let's look at the controls

- Chemical Process Control tests overall measurement system

Serum free conditions, variability less than with NP
Differences between cell lines
Cell line differences?

<table>
<thead>
<tr>
<th>Medium volume (µm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2327±94</td>
</tr>
<tr>
<td>2047±90</td>
</tr>
</tbody>
</table>

Cell ID

A549-A 22.6±2.23 STR

A549-B 22.5±2.43 STR

• a. FAM dye
• b. NED dye
• c. PET dye
• d. VIC dye
How sensitive are we to cell seeding variability

- Correlation between no-treatment cells and NP EC50
- If outliers are removed, no strong correlation
- Suggests that within this range of cell seeding variability (OD=1.5-2.5) no big effect on EC50
Pipetting volumes and cells

Within pipette volume control

Within pipette cell control

Variability in pipetting volumes< variability in pipetting cells
Specification of process controls:

<table>
<thead>
<tr>
<th>Control</th>
<th>Serum free: target value</th>
<th>Serum free: range</th>
<th>Serum free: variability</th>
<th>Serum: target value</th>
<th>Serum: range</th>
<th>Serum: variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 1 (within) B6 – G6</td>
<td>1.8 OD</td>
<td>1.5-2.0 OD</td>
<td><10%</td>
<td>2.0 OD</td>
<td>1.8-2.3</td>
<td><7%</td>
</tr>
<tr>
<td>Control 2 (between) B3-B6 B8-B10</td>
<td>1.5 OD</td>
<td>1.3-1.8 OD</td>
<td><12%</td>
<td>2.2 OD</td>
<td>1.8-2.8</td>
<td><7%</td>
</tr>
<tr>
<td>Control 3A Background B7-G7</td>
<td>0.06 OD</td>
<td>0.05-0.09 OD</td>
<td><6%</td>
<td>0.06 OD</td>
<td>0.05-0.09 OD</td>
<td><6%</td>
</tr>
<tr>
<td>Control 3B 1) Background Chemical Control B2-G2</td>
<td>0.06</td>
<td>0.05-0.09</td>
<td><6%</td>
<td>0.06</td>
<td>0.05-0.09</td>
<td><6%</td>
</tr>
<tr>
<td>Control 3C 2) Background NP B11-G11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 4 3) Chemical reaction control</td>
<td>49.9</td>
<td>47.5-51.5</td>
<td></td>
<td>77.2</td>
<td>54.3-99.4</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions:

• Interlab data with process controls presents a powerful view of a biological assay
• The findings regarding the sources of variability in this assay may be relevant for other cytotoxicity assays
• Check cell line ID. May affect controls and not test result
• The process used to quantify the sources of variability and generate test specifications can be used with other assays
• Meeting specifications provides evidence that the test procedure is as expected. “Accept test result”
• Adds Measurement Assurance to a Cell Assay
Collaborators

Matthias Rosslein
Harald Krug
Peter Wick
Cordula Hirst
Rawiwan Maniratananchoote
Nam Woong Song
Francois Rossi
Agnieska Kinsner-Ovaskainen