Measurement assurance tools and potential application to alternative test methods

Elijah Petersen and John Elliott
Cell Systems Science Group
Material Measurement Laboratory
National Institute of Standards and Technology
Measurement Assurance in Biological Assays

Cause and Effect Analysis: A new approach for developing robust nano-bio assays
Workshop hosted by EMPA (Switzerland) on June 18 & 19, 2015
16 participants in attendance from 3 countries

Evaluated five *in vitro* assays for use with nanoparticles:
MTS assay (cell viability)
DCF-DH assay (ROS generation)
Flow cytometry assay (quantification of viable, necrotic, or apoptotic cells)
Comet assay (genotoxicity)
ELISA assay for IL-8 (inflammation response)

For each assay, we developed a flow chart, cause-and-effect analysis, and control experiments

Workshop paper to be submitted in the next month
Assessing the robustness of an ISO method for *C. elegans* with nanomaterials

- One key topic related to using alternative test methods with nanomaterials is how to assess if the assay is sufficiently robust
- Tested the assay with 15 NPs using different compositions, coatings and sizes
- An artifact was observed for positively charged particles as a result of agglomeration with the food source
- Two orthogonal *C. elegans* assays did not reveal toxicity

Redesigning electrophilic allergen screening assay to increase measurement assurance (in collaboration with CPSC)

• Change from single cuvette assay to 96-well plate
• Instrumentation has now been set up at NIST for the plate reader, fluorometer, and spectrophotometer
• New plate design to include multiple process control measurements
• Choose positive control concentrations to maximize information about assay performance
• Statistical evaluation of how to determine threshold values and increase confidence in determinations
• Unique considerations for plate reader measurements related to testing a 50% organic solvent/50% phosphate buffer solution