

NICEATM Update

Nicole Kleinstreuer, PhD

Deputy Director, NICEATM

ICCVAM Public Forum May 23, 2019

- ICE 2.0 and tools
 - CATMoS
 - IVIVE
 - Determining pKa from Chemical Structure
- OECD Skin Sensitization Project
- Automating Reference Data Identification for Developmental Toxicity
- Alternatives for Rabies Vaccine Testing
- Implementation of the Monocyte Activation Test for Medical Devices
- Alternatives for Botulinum Neurotoxin Testing

- Updated Search
- Expanded IVIVE
- Data Updates

Machine Learning >

Chemical Characterization >

IVIVE >

Search >

Assay Selection

	1			
Integrate Chemical Environm	ed I nent		HOME SEARCH TOOLS DATA ABOUT HELP	
		Chemicals	Mixtures	
Input				
Results	Run Search Clear			
	Select Assays		Union or Intersection	
	Assay	Description Assay Type	Union X V	
	DPERA LogD, p	Phys Chem in silico	✓ Add Chemicals with same QSAR-structure	
	DPERA fu	Phys Chem in silico	① 1 chemical quick list selected.	
	💼 Hershberger, Ag	Endocrine in vivo	Enter one CASRN per I Select Assays	
	androgen Rece	Tox21 in vitro	Endocrine	× ~
			Select All Deselect All	
			✓ Androgen	E
			Hershberger, Agonist rat in vivo	C

Data updates include:

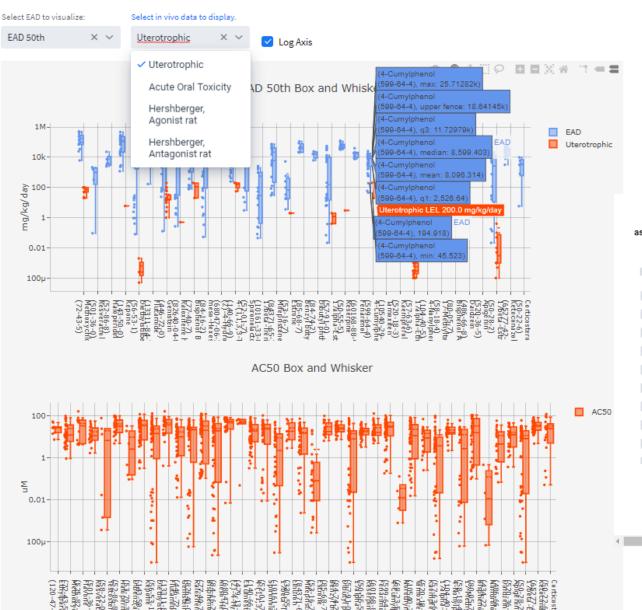
- New OPERA models for ADME
 and physchem properties
- Hershberger assay data

√ Ar	ndrogen		^
	Hershberger, Agonist rat	in vivo	
	Hershberger, Antagonist rat	in vivo	
	AR Binding	in vitro	
	AR Transactivation-Agonist	in vitro	
	AR Transactivation-Antagonist	in vitro	
	AR Potency Category	in vitro	
~	TOX21 Androgen	in vitro	
	Androgen Receptor Pathway	in vitro	
	AR Pathway Model, Agonist	in silico	
	AR Pathway Model, Antagonist	in silico	
✓ Es	strogen		-

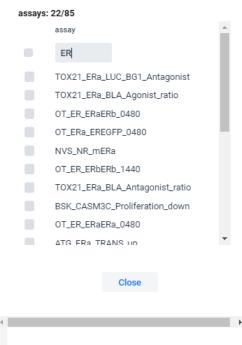
Finished

Updated Search Table

Integrate Chemical Environm								HOME S	EARCH	TOOLS	DATA		ABOUT	HELP
					Chem	icals Mixtu	ires							
Input Results		ected Assays: H ected Reference		- í	• •	•	-	del, Agonist	, OPERA CL	int				
	Download	Query Forr	mulations	Clear Filter	Number of ch	emicals = 65.								
	QSAR Match	Substance 🍦 Name	CASRN ≑	dtxsid 👙	Qsar Ready ID	Hershber Agonist rat LOEL mg/kg/day	Hershber Agonist rat NOEL mg/kg/day	Hershber Agonist rat Call	Androg Recepto Pathwa Call (# Assays=	or ay \$	PhysChem Properties CLint uL/min/ hepatocy	•		
	T	T	T	T	T									
	YES	Metalaxyl-M	70630-17-0	DTXSID80	ZQEIXNIJ UHFFFAO N				Inactiv	re:U	0.218			
		Metalaxyl	57837-19-1	DTXSID60	ZQEIXNIJ UHFFFAO N		375	inactive	Active:	cou	0.218			
		Dichlorodi	50-29-3	DTXSID40	YVGGHN UHFFFAO N				Active:	cou	0.56			
New! Ac												• •		
	with the same QSAR structure to query													


Expanded IVIVE Tools

Integr Chemi Enviro	ical		HOME SEARCH TOOLS	DATA ABOUT HELP
	IVIVE	Machine Learning	Chemical Characterization	
it 🚽	IVIVE Workflow Input			
ilts	The IVIVE tool uses pharmacokinetic models assays.	to predict the daily equival	ent administered dose from activity	concentration of selected
	Run Workflow			
	Select Chemical Quick List Enter one CASRN per line.		Select Assays Androgen Receptor Pathway	IVIVE tool has been updated include PBPK models
			Cell Cycle Cytochrome P450 Cytotoxicity (burst) Cytotoxicity (burst + stress) Estrogen Receptor Pathway G Protein-Coupled Receptors Mitochondrial Nuclear Receptor Steroidogenesis All Other Tox21 Assays	 Solve_3comp from EPA's httk package Glucuronidation PBPK model in BETA Currently limited to 50
	Select in vitro endpoint:		Select Route	chemicals per query
	AC50 × ~		iv × ×	
	1C Glu PBPK		Dosing Intervals, hours	
	✓ Solve_3comp		24	
	Select model:		Days of exposure, days	
	Solve_3comp × ×		3	
	These models come from the US EPA httk 1.9	.2 package. For details see		


Userguide

Overlay In Vivo Data on IVIVE Results

- Overlay in vivo data
- Update the plots with assay filtering
- Download data to explore locally

CERAPP

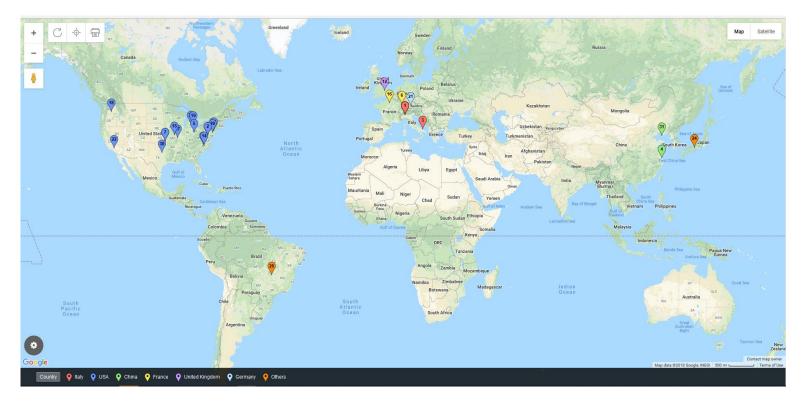
Collaborative Estrogen Receptor Activity Prediction Project (2015/16)

CoMPARA

Collaborative Modeling Project for Androgen Receptor Activity (2017/18)

CATMOS Collaborative Acute Toxicity Modeling Suite (2018/19)

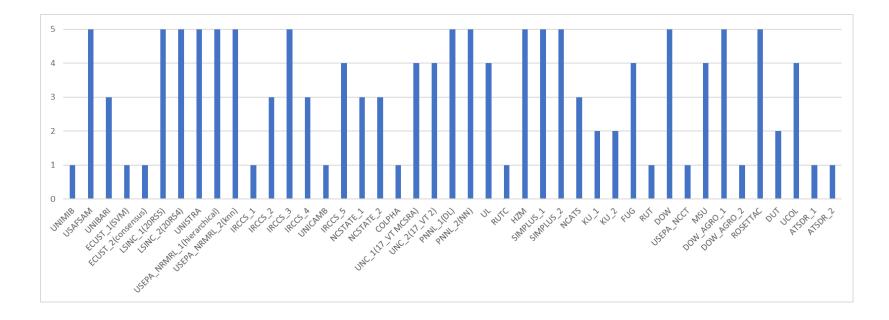
Endocrine Disruptor Screening Program (EDSP)


ICCVAM Acute Toxicity Workgroup

Over 100 international participants representing academia, industry, and government contributed.

Consortium:

 <u>35 Participants/Groups</u> from around the globe representing academia, industry, and government contributed


(https://batchgeo.com/map/d06c5d497ed8f76ecfee500c2b0e1dfa)

- GHS categories:
- Very Toxic:
- Non-toxic:
- EPA categories:
- LD50:

23 models

- 32 models
- 33 models
 - 26 models
 - 25 models
- Total: 139 models

Qualitative evaluation:

- Documentation
- Defined endpoint
- Unambiguous algorithm
- Availability of code

Quantitative evaluation:

- Goodness of fit: training statistics
- Evaluation set predictivity: statistics on the evaluation set
- Robustness: balance between (Goodness of fit) & (Test set predictivity)

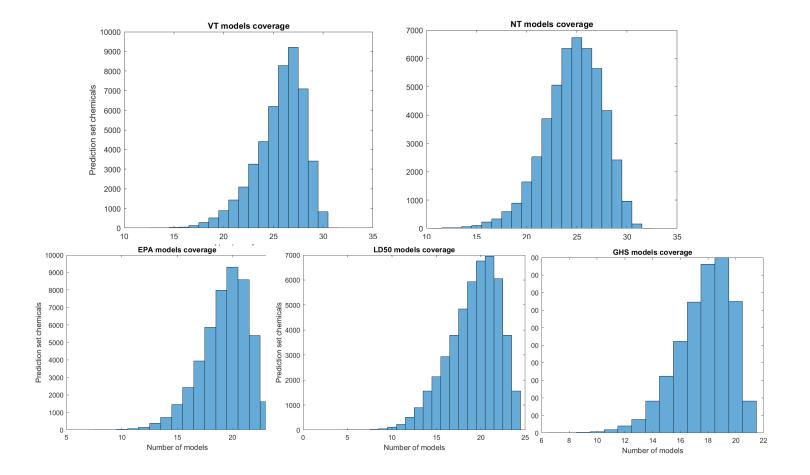
S = 0.3 * (Goodness of fit) + 0.45 * (Test set predictivity) + 0.25 * (Robustness)

Categorical models (binary and multi-class):

 $Goodness \ of \ fit = 0.7 * (BA_{Tr}) + 0.3 * (1 - |Sn_{Tr} - Sp_{Tr}|)$ $Test \ set \ predictivity = 0.7 * (BA_{Tst}) + 0.3 * (1 - |Sn_{Tst} - Sp_{Tst}|)$ $Robustness = 1 - |BA_{Tr} - BA_{Tst}|$

Continuous models:

Goodness of fit = R_{Tr}^2 Test set predictivity = R_{Tst}^2 Robustness = $1 - |R_{Tr}^2 - R_{Tst}^2|$


• Availability of data used for modeling

• Applicability domain definition

• Mechanistic interpretation

Distribution of the number of models/chemical

- Models passing qualitative evaluation (requirement for transparency; description of approach was sufficient)
- Integrating only *in-domain* predictions across chemicals in the prediction set (48,137 chemicals) for each model, respectively
 - Categorical models: weighted majority rule
 - Continuous model: weighted average

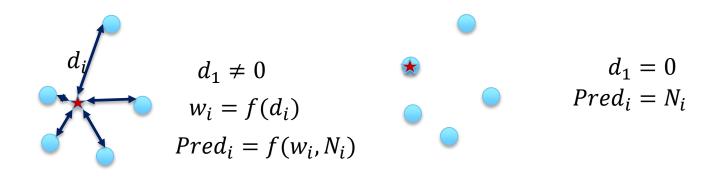
CATMoS Consensus Model Statistics

	Very Toxic		Non-Toxic		EPA		GHS	
	Train	Eval	Train	Eval	Train	Eval	Train	Eval
Sensitivity	0.87	0.67	0.93	0.70	0.73	0.50	0.63	0.45
Specificity	0.94	0.96	0.96	0.88	0.96	0.91	0.91	0.92
Balanced Accuracy	0.93	0.81	0.94	0.79	0.83	0.71	0.77	0.68
<i>In vivo</i> Balanced Accuracy	0.	81	0.	89	0.	82	0.	79

	LD50 values	LD50 values
	Train Eval	In Vivo
R2	0.84 0.64	0.80
RMSE	0.32 0.51	0.42

The consensus predictions perform as well as replicate *in vivo* data at predicting oral acute toxicity outcome

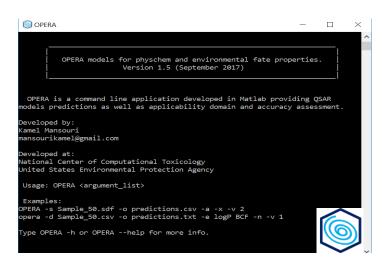
Generalized CATMoS models: datasets

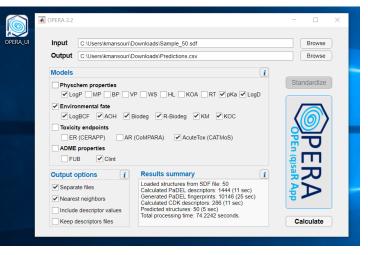

- LD50: 28954
- VT: 23767
- NT: 30971
- EPA: 25487
- GHS: 25720

- High concordance among models
- Proportional distribution of:
 - LD50 values
 - VT/NT classes
 - EPA/GHS categories

- Split into 75% training and 25% test set
- Calculate PaDEL & CDK2 descriptors
- Dimensionality reduction (missing values & low variance)
- Feature selection (most relevant descriptors for each endpoint)

Generalized CATMoS models: new chemical predictions


- * New chemical to be \bigcirc Nearest neighbors (N_i) predicted
- d_i : Euclidean distance based on the selected descriptors for each endpoint



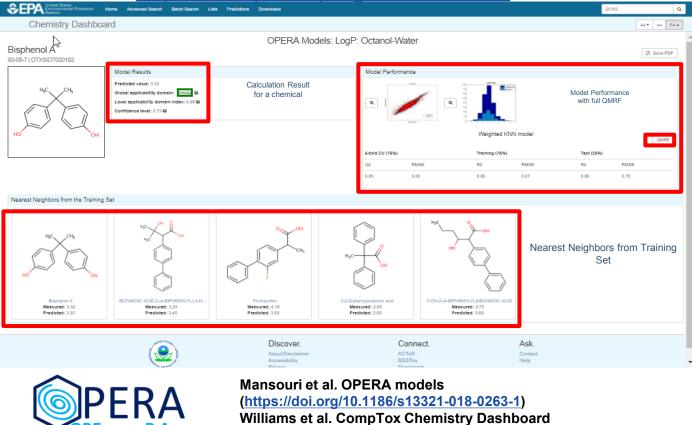
Automated, weighted-endpoint dependent read-across: weighted kNN

OPERA Standalone app

Command line

Graphical user interface

- Free, open-source & open-data
- Single chemical and batch mode
- Multiple platforms (Windows and Linux)
- Embeddable libraries (java, C, C++, Python)


Mansouri et al. J Cheminform (2018). https://doi.org/10.1186/s13321-018-0263-1

Available on ICE and EPA CompTox dashboard

https://comptox.epa.gov/dashboard

(https://doi.org/10.1186/s13321-017-0247-6)

En (g)saR App

OPERA 1.5

Physchem & Environmental fate:

Model	Property
AOH	Atmospheric Hydroxylation Rate
BCF	Bioconcentration Factor
BioHL	Biodegradation Half-life
RB	Ready Biodegradability
BP	Boiling Point
HL	Henry's Law Constant
KM	Fish Biotransformation Half- life
KOA	Octanol/Air Partition Coefficient
LogP	Octanol-water Partition Coefficient
MP	Melting Point
кос	Soil Adsorption Coefficient
VP	Vapor Pressure
WS	Water solubility
RT	HPLC retention time

New in OPERA2:

- Physchem properties:
 - General structural properties
 - pKa
 - Log D
- Toxicity endpoints
 - ER activity (CERAPP)
 <u>https://ehp.niehs.nih.gov/15-10267/</u>
 - AR activity (CoMPARA) <u>https://doi.org/10.13140/RG.2.2.19612.80009</u>
 - Acute toxicity (CATMoS) <u>https://doi.org/10.1016/j.comtox.2018.08.002</u>)
- ADME properties
 - Plasma fraction unbound (FuB)
 - Intrinsic clearance (Clint)

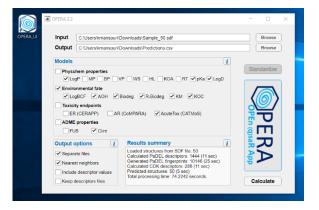
- The logarithmic dissociation constant, pKa, strongly influences a chemical's pharmacokinetic and biochemical properties:
 - Reflects the ionization state of a chemical,
 - Affects lipophilicity, solubility, protein binding, tissue:plasma partition coefficients and blood-brain barrier.

pKa is important for ADMET properties, PBPK modeling and IVIVE

Problem statement:

No currently available free and transparent predictors for heterogeneous chemical classes


Building free & open source models using free & open source tools:


- pKa values for 7912 chemicals collected from DataWarrior.
- Data curated and chemical structures were standardized for QSARs
- PaDEL software to calculate molecular descriptors and fingerprints.
- Several machine learning approaches were applied:
 - DNN: deep neural networks
 - SVM: support vector machine
 - XGB: extreme gradient boosting.
- Models were 5-fold cross-validated and evaluated against an external test set.
- The best models for each algorithm were compared to each other and to predictions from ACD/Labs and ChemAxon

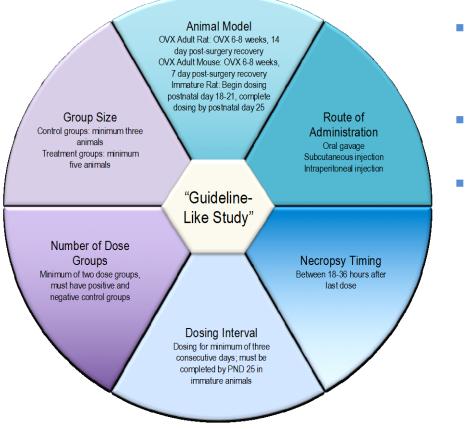
pKa project outcome

- Free and open source QSAR models for acidic and basic pKa
- Accuracy reaching an RMSE of 1.5 and an R² of 0.8
- Best models applied on DSSTox chemicals (~850k)
 - <u>https://ice.ntp.niehs.nih.gov/</u>
 - <u>https://comptox.epa.gov/dashboard</u>
- Manuscript submitted to Journal of Cheminformatics
- New chemicals can be predicted using OPERA (with applicability domain and accuracy estimates)

VIEHS / OPERA forked from kmansouri/OPERA			⊙ Watch ▼	1 🗙 Star 1 😵 Fork 5				
↔ Code 🕅 Pull requests (Projects 0	🖽 Wiki 🔄 Insights	🔅 Settings					
accuracy assessment for phys	Free and open-source application (command line and GUI) providing QSAR models predictions as well as applicability domain and Edit accuracy assessment for physicochemical properties, environmental fate and toxicological endpoints. ========>Download the latest compiled version from the "releases" tab and run the executable installer. Manage topics							
142 commits	₽1 branch	12 releases	🚨 1 contributor	MIT هِل				
Branch: master 👻 New pull requ	lest		Create new file Upload files	Find File Clone or download -				

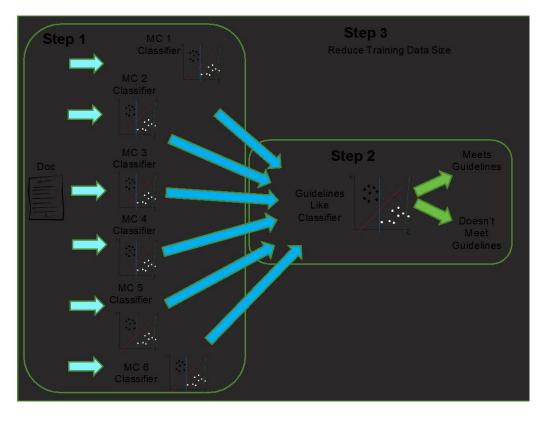
- In support of OECD Defined Approach Guideline project
- LLNA database
 - DASS Expert Group expressed concerns about reference classifications
 - Project leads are re-evaluating; eliminating tests without supporting concentration/SI data and those using modified protocols
- Human database
 - Being expanded and QC'd with help from German National Institute for Risk Assessment (BfR)

Bundesinstitut für Risikobewertung



- Purpose: to provide reference human data to support the evaluation of alternative skin sensitization test methods
- Objectives
 - 1. Curate human predictive patch test database for DA performance assessment
 - 2. Analyze data to understand uncertainty and sources of variability
 - 3. Develop/apply a transparent, reproducible system for human skin sensitization potency categorization
 - Review/build on Basketter et al. 2014 & Api et al. 2017, which used data from predictive and diagnostic human patch tests

- Anne Marie Api, Research Institute for Fragrance Materials
- Nicole Kleinstreuer, U.S. National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods
- Hon Sum Ko, U.S. Food and Drug Administration, Division of Dermatology and Dental Products
- Joanna Matheson, John Gordon, U.S. Consumer Product Safety Commission, Health Sciences Directorate
- Judy Strickland, Integrated Laboratory Systems, contractor supporting NICEATM
- Matthias Herzler, Herrmann-Josef Thierse, German Federal Institute for Risk Assessment (BfR), Chemical and Product Safety



- Systematic literature search of publically available data (e.g. PubMed)
- Identify chemical activities measured in "guideline-like" uterotrophic studies
- Identify a subset of *in vivo* reference chemicals
 - Active chemicals verified in <u>></u>2 independent studies
 - Inactive chemicals verified in <u>></u>2 independent studies (with no positive results in any study)

Kleinstreuer et al. EHP (2015)

Automating Reference Data Identification

- Project with Oak Ridge National Labs (ORNL) and FDA CFSAN to apply textmining (NLP) approaches & ML to identify high-quality data
- Semi-automated retrieval and evaluation of published literature (trained on uterotrophic database)
- Apply to developmental toxicity studies

- Define literature search keywords
 - Use to search for developmental and reproductive toxicity studies
- Identify regulatory guidelines for conducting developmental and reproductive toxicity studies
- Extract study protocol details from guidelines
- Characterize study protocols to identify guideline components and minimum criteria
 - Group into tiered sets
 - 1) Required (appear in all TGs)
 - 2) Preferred
 - 3) Nice-to-have

A. Turley, US FDA postdoc

- NICEATM and the PETA International Science Consortium (PISC) coorganized a workshop to discuss the use of the human cell-based monocyte activation test (MAT) as a standalone release test for medical devices.
 - September 18-19, 2018; NIH, Bethesda, MD, USA
- ~50 regulators, test developers, medical device manufacturers
 - discussed approaches to support use of the MAT for batch release testing of medical devices.
- Participants recommended studies needed to fill information gaps.
- Stakeholder subgroup will be convened to use the workshop conclusions as the basis for a proposal to the U.S. Food and Drug Administration's Medical Device Development Tools Program to consider the MAT as a non-animal alternative for pyrogen testing
- Finalizing workshop report for submission to ALTEX in the coming weeks

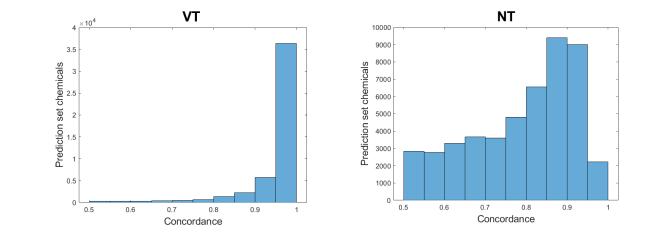
- NICEATM and the International Alliance for Biological Standardization North America (IABS-NA) co-organized workshop.
 - October 16-17, 2018; NIH, Bethesda, MD, USA
- ~60 scientists from government, academia and industry developed recommendations to advance alternative methods for human and veterinary rabies virus vaccine testing.
- Detailed the current state of the science of nonanimal alternatives to traditional animal-based rabies virus vaccine potency and safety tests.
- Breakout group discussions focused on the steps necessary for implementing alternatives for veterinary and human rabies virus vaccine potency testing.
- Identified actions and data needed for further progress
- Finalizing workshop report to summarize meeting outcomes and associated conclusions – will be submitted to the Biologicals for publication in the next few weeks.

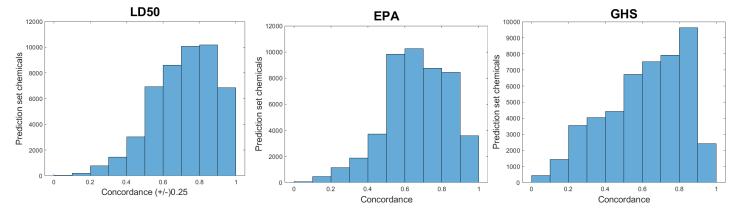
- Current assay to detect BoNT is a mouse bioassay
- A BoNT/E-specific ELISA-based kit has been developed by BioSentinel to detect BoNT/E in avian blood samples.
 - Current effort focused on establishing transferability to the National Wildlife Health Center (NWHC), part of the U.S. Geological Survey; also demonstrating long-term performance and suitability
- Additionally, a BoNT/C-specific ELISA-based kit has also been developed by BioSentinel.
 - Initial studies indicated that BoNT/C could not be detected in avian blood samples
 - Follow-up spike-recovery testing indicated that components in the blood were interfering with detection.
 - Current effort focused on additional development to reduce assay interference effects
- Collaborative effort with BioSentinal and NWHC

- Challenge: Identifying alternatives to current animal-based methods for producing monoclonal and polyclonal antibodies (i.e., development of non-animal affinity reagents)
- EURL-ECVAM Scientific Advisory Committee (ESAC) reviewed the scientific validity of antibodies and non-antibody affinity reagents generated using animal-free technologies for use in research and diagnostics
- The ESAC WG has circulated their complete report for internal commenting and finalization.
 - Publication of the ESAC Opinion and Final Report scheduled for Spring 2019
- In general, there is a lack of any scientific evidence that these methods cannot be used in place of animal-based antibodies
- Based on the ESAC report, next steps for ICCVAM?
 - Facilitate implementation
 - Identify barriers and actionable solutions
 - Planned workshop for December 2019 (NIH Porter Neuroscience Center)

Acknowledgments

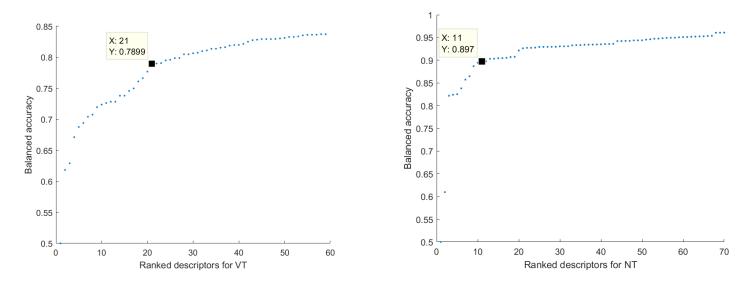
- ILS/NICEATM
- ICCVAM partners
- ICATM partners
- Modeling consortium participants





Extra Slides

Consensus concordance


Distributions of the concordance between models

Consensus implementation

Generalized CATMoS models: statistics

Endpoint	Descriptors	Training (5-f CV)	Test set
VT (BA)	21	0.79	0.77
NT (BA)	11	0.90	0.89
EPA (BA)	15	0.79	0.81
GHS (BA)	15	0.78	0.79
LD50 (Q ² ,R ²)	23	0.79	0.81