



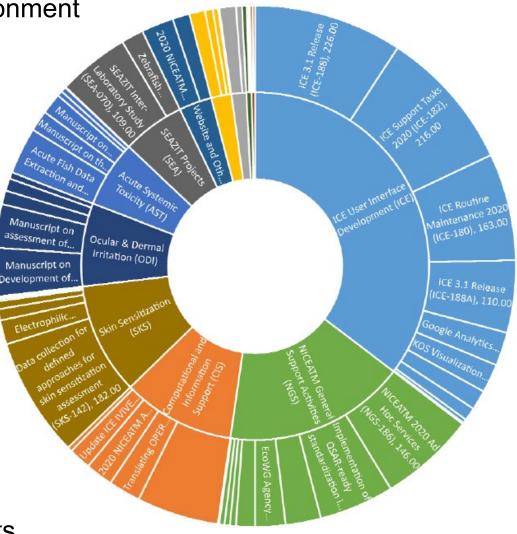



## **NICEATM Update**

## ICCVAM Public Forum



ICCVAM Advancing Alternatives to Animal Testing





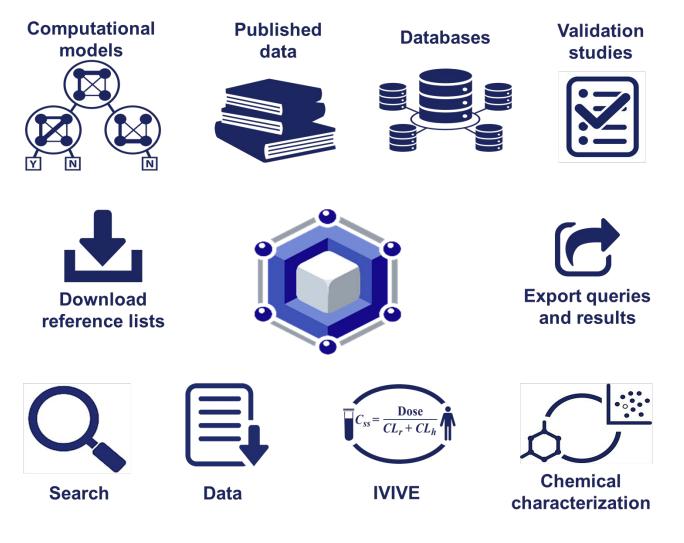



## **Ongoing Efforts**

- Integrated Chemical Environment
- OPERA (QSAR/QSPR)
- Variability of in vivo data
- Data curation
- Acute Toxicity
- Dermal absorption
- Eye and skin irritation
- SEAZIT
- Skin sensitization
- Carcinogenesis
- Cardiovascular toxicity
- Animal-free affinity reagents






- Computational tools and resources play a critical role in chemical evaluations such as:
  - Data aggregation
  - Exploring chemical properties
  - In vitro to in vivo extrapolation
  - Mapping high-content data to biological systems
  - Generating predicted values







## **Integrated Chemical Environment (ICE)**





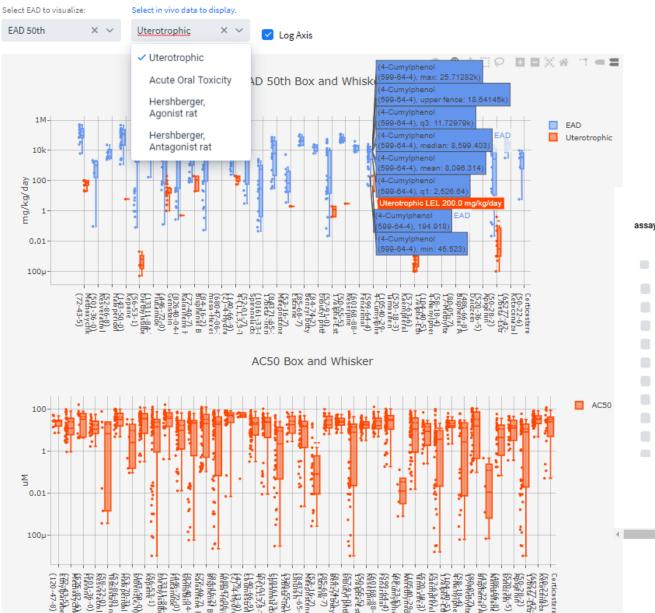
https://ice.ntp.niehs.nih.gov/



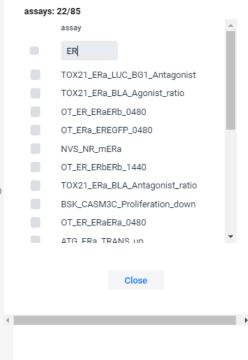
- Data are curated and annotated
  - Provides context for those unfamiliar with a given assay
  - Removes low confidence values (e.g. due to chemical QC)
  - Provides mapping back to controlled terminology
- Tools are browser based
  - IVIVE (EPA httk package and in-house code) can be run with ICE data or user data from the browser, open-access, nothing to install
  - Easily merge HTS results from Tox21/ToxCast with available in vivo data
- Connection with other tools/resources:
  - Send query chemicals to EPA dashboard (bulk search July 2020) and DTXSIDs link directly to the chemical dashboard page
  - Links to CEBS under development (via API for test article information and study details, and via IVIVE tool to overlay in vivo effect levels)



## **Data in ICE**


| Toxicity endpoint   | Assays                                                                                                              | # of chemicals*           |
|---------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|
| Acute Oral Toxicity | In vivo acute oral toxicity                                                                                         | 10,335**                  |
| Skin Sensitization  | DPRA, hCLAT, KeratinoSens, LLNA, human potency, etc.                                                                | 578                       |
| Skin Irritation     | <i>In vivo</i> acute skin irritation/corrosion, 4h HPT;<br><i>In vitro</i> irritation/corrosion (e.g.,EpiSkin, TER) | 271                       |
| Eye Irritation      | <i>In vivo</i> acute eye irritation/corrosion (e.g., Draize eye), Vitrigel                                          | 183                       |
| Endocrine           | AR/ER Pathway Models, Uterotrophic,<br>Hershberger, AR/ER transactivation                                           | 1,917**                   |
| cHTS                | Curated ToxCast and Tox21 assays                                                                                    | 9224                      |
| OPERA predictions   | BP, HLC, KOA, BCF, LogP, MP, MW, VP, WS,<br>COMPARA, CERAPP, CATMoS                                                 | 838,911                   |
| Formulation data    | Six-pack                                                                                                            | 298<br>(747 formulations) |




\*Values from March 2020 Release

\*\*Does not include in silico predictions from OPERA





- Overlay in vivo data
- Update the plots with assay filtering
- Download data to explore locally





- OPERA is a free and open-source quantitative structure-activity relationship (QSAR) tool.
- OPERA predictions include:
  - Physchem properties
    - General structural properties
    - Environmental fate
  - ADME properties
  - Tissue partition coefficient inputs
  - Models for Toxicity Endpoints
    - CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
    - CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity
    - CATMoS: Collaborative Acute Toxicity Modeling Suite



https://github.com/NIEHS/OPERA



### Applying machine learning to predict endpoints of regulatory importance



Collaborative Estrogen Receptor Activity Prediction Project (2015/16)

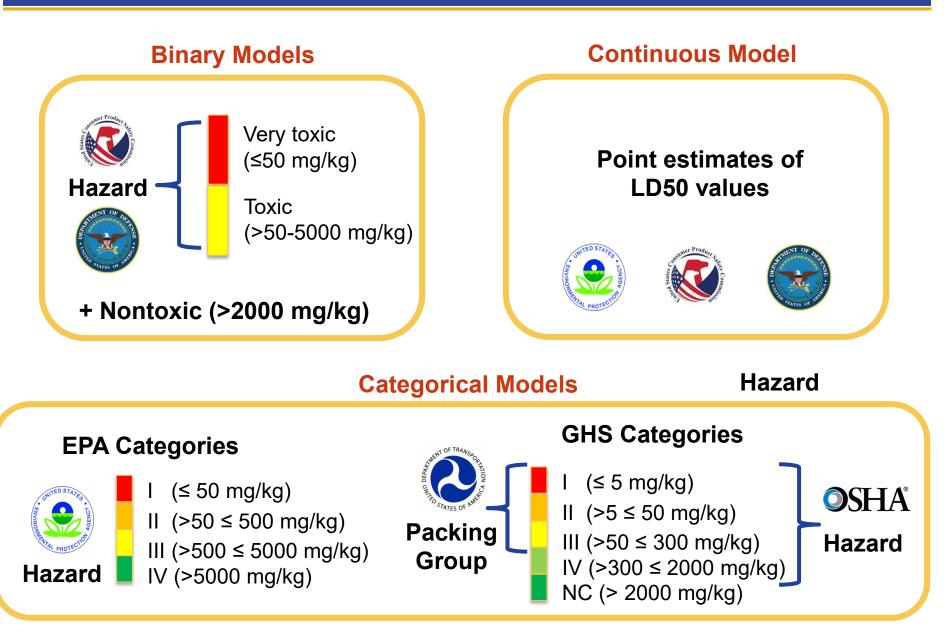
## CoMPARA

Collaborative Modeling Project for Androgen Receptor Activity (2017/18)

CATMoS

Collaborative Acute Toxicity Modeling Suite (2018/19)




### Endocrine Disruptor Screening Program (EDSP)



ICCVAM Acute Systemic Toxicity Workgroup

Mansouri et al. 2016 EHP 124:1023–1033 Mansouri et al. 2020 EHP 128 (2) Kleinstreuer et al. 2018 Comp Tox; Mansouri et al. 2020 in prep





|            |              | Origi | nal: ind | depen                                                 | dent cal              | ls               | WoE: consistent calls |               |   |      |                                                           |               |       |        |                   |
|------------|--------------|-------|----------|-------------------------------------------------------|-----------------------|------------------|-----------------------|---------------|---|------|-----------------------------------------------------------|---------------|-------|--------|-------------------|
|            |              | VT    | NT       | EPA                                                   | GHS                   | LD50             |                       |               |   | VT   | NT                                                        | EPA           | GHS   | LD50   |                   |
|            | molX         | 0     | 0        | 2                                                     | 3                     | <mark>2.5</mark> |                       | ,             |   | molX | 0                                                         | 0             | 2     | 3      | <mark>2.36</mark> |
| Model      | (            | )     | 5        |                                                       | Winning bin<br>50 300 |                  |                       | 500 2000 5000 |   |      | mg/kg                                                     |               |       | Î      |                   |
| Prediction | VT           | 0     |          | 0                                                     | 1                     | 1                |                       | 1             | 1 | 1    |                                                           |               |       |        |                   |
|            | NT           | NT 1  |          | 1                                                     | 1                     | 1                |                       | 1             | 0 | 0 0  |                                                           | How to adjust |       |        |                   |
|            | EPA          | 0     |          | 0                                                     | 1                     | 1                |                       |               | 0 | 0    | How to adju<br>quantitative LD<br><b>Avg of Lower C</b> I |               | .D50? |        |                   |
|            | GHS          | 0     |          | 0                                                     | 1                     | 0                |                       | 0             | 0 | 0    | upper bin thresho                                         |               |       | eshold |                   |
|            | <u>LD50?</u> | 0     |          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                       |                  |                       |               |   |      | (160+300)/2<br>=230mg/kg                                  |               |       |        |                   |
|            | WoE          | 1     |          | 1                                                     | 5                     | 4                |                       | 3             | 1 | 1    |                                                           |               |       |        |                   |



| Agency                                      | No. Substances | Agency    | No. Substances |
|---------------------------------------------|----------------|-----------|----------------|
| Air Force                                   | 421            | EPA OPP   | 36             |
| Army Public Health Command                  | 18             | EPA OPPT  | 8              |
| Army Edgewood Chemical<br>Biological Center | 42             | EPA NCCT  | 4815           |
| CPSC                                        | 110            | FDA CFSAN | 22             |
| DOT                                         | 3671           |           |                |

### **Evaluate and optimize CATMoS predictions based on lists of interest**



### Issues in acute oral tox data revealed by model predictions

| с         | L M                                | Т        | V         | ВН                      | BI               | BJ               | ВК      | BL       | BM        | BO                                    | BP             | BQ            |
|-----------|------------------------------------|----------|-----------|-------------------------|------------------|------------------|---------|----------|-----------|---------------------------------------|----------------|---------------|
| RML.CAS.  | Count Original_LD50 (Concatenate)  | ld50_mea | log(LD50_ | ECHA_log(LD50) (Median) | CATMoS_LD50_data | CATMoS_LD50_pred | AD_LD50 | AD_index | Conf_inde | Curated LD50 (mg/kg unless otherwi    | New LD50(mg/kg | ECHA dossier  |
| 106-88-7  | 2 >1<1.58, ca.900                  | 635.4839 | 2.010766  | 1.53241611              | 2.698970004      | 2.853029628      | 3 1     | . 1      | 0.916667  | 900, 1100uL/kg (so ~1100 mg/kg)       | 1100           | https://www.e |
| 107-83-5  | 1 ca.15.84                         |          |           | 1 199755177             |                  | 3.448749354      | L 1     | . 1      | 0.725     | 15.84. 15.840 from analog hexano?     | 15840          | https://www.e |
| 109-99-9  | 1 1.65                             |          |           | 0.217483944             | 3.217483944      | 3.18/110886      | 5 1     | . 1      | 0.953 03  | 1.65 g/kg                             | 1650           | https://www.e |
| 111-66-0  | 15 >5, >2000, >2000<5000, >5000    | 2841.763 | 0.640297  |                         |                  | 3.45444881       | l 1     | . 1      | 0.835565  | 5mi/kg, 10ml/kg (so ~5000mg/kg and    | 5660           | https://www.e |
| 111-67-1  | 8 >5, >5000, >5000, >5000, >500    | 3152.287 | 0.871083  |                         |                  | 3.492481795      | 5 1     | . 1      | 0.829743  | > 10,000 mg/kg                        | 10000          | https://www.e |
| 111-90-0  | 10 <5, >5000, 5600, 6300, 6429, 7  | 4053.38  | 1.120322  |                         | 3.745855195      | 3.65968502       | 2 1     | . 1      | 0.96      | 6031mg/kg                             | 6031           | https://www.e |
| 112-41-4  | 15 >5, >2000, >2000<5000, >5000    | 2841.763 | 0.640297  |                         |                  | 3.544496936      | 5 1     | . 1      | 0.818182  | > 5 600 mg/kg bw                      | 5600           | https://www.e |
| 112-88-9  | 30 >5, >5, >2000, >2000, >2000<5   | 2792.337 | 0.62916   |                         |                  | 3.635710211      | 1 1     | . 1      | 0.818182  | >5600 mg/kg                           | 5600           | https://www.e |
| 1120-36-1 | 30 >5, >5, >2000, >2000, >2000<5   | 2792.337 | 0.62916   |                         |                  | 3.596186376      | 5 1     | . 1      | 0.818182  | >5600 mg/kg                           | 5600           | https://www.e |
| 120657-54 | 1 >5                               |          |           |                         |                  | 3.666120933      | 3 1     | 0.939981 | 0.800223  | >5000mg/kg based on methods secti     | c 5600         | https://www.e |
| 15290-77- | 1 >2                               |          |           |                         |                  | 2.753248503      | 3 1     | . 1      | 0.928571  | >2000                                 | 2500           | https://www.e |
| 15708-41- | 2 ca.10, >2000                     | 2467.803 | 1.798928  | 2.272034022             | 3.699056855      | 3.542618212      | 2 1     | . 1      | 0.826087  | >2000, 10000                          | 6750           | https://www.e |
| 2082-81-7 | 1 1066                             |          |           | 1.002856926             | 1.002856926      | 3.519759531      | 1       | 0.925145 | 0.857464  | 10.066 listed, but dose groups were i | т 10066        | https://www.e |
| 27689-12- | 1 >17                              |          |           |                         |                  | 3.199754313      | 3 1     | 0.819989 | 0.820274  | 16 mL/kg (17,600 mg/kg).              | 17600          | https://www.e |
| 39255-32- | 3 >5, >5, >2000                    | 2004.849 | 1.21517   |                         |                  | 3.706432708      | 3 1     | . 1      | 0.75      | >2000, >5000(MALES), >5000(FEMAL      | E 3500         | https://www.e |
| 4499-91-6 | 7 >33, >300, >655, >2000, >2000    | 2447.428 | 0.74583   |                         |                  | 3.83929336       | 5 1     | . 1      | 0.755952  | 2000, 2000, 5000, 5000, 2000, >5<15   | g 3500         | https://www.e |
| 543-39-5  | 1 5.3                              |          |           | 0.72427587              | 0.72427587       | 3.290357289      | ) 1     | 0.95565  | 0.898544  | 5.3g/kg                               | 5300           | https://www.e |
| 56-81-5   | 3 >20<39800, 27, 18300             | 11044.07 | 1.645202  |                         | 3.958324932      | 3.740734556      | 5 1     | . 1      | 0.68      | 27260 mg/kg                           | 18300          | https://www.e |
| 592-41-6  | 15 >5, >2000, >2000<5000, >5000    | 2841.763 | 0.640297  |                         |                  | 3.296929233      | 3 1     | 0.955175 | 0.823902  | read-across source >5600 mg/kg.       | 5600           | https://www.e |
| 629-73-2  | 30 >5, >5, >2000, >2000, >2000<5   | 2792.337 | 0.62916   |                         |                  | 3.60464617       | / 1     | . 1      | 0.818182  | 5ml/kg, 10ml/kg, 5g/kg, >2000<5000    | 3500           | https://www.e |
| 75-50-3   | 11 ca.2, 396.9, 397, 460, 500, 512 | 496.477  | 0.783002  | 2.823474229             | 2.662757832      | 2.657059529      | ) 1     | . 1      | 0.806983  | 2.0g/kg                               | 666            | https://www.e |
| 76114-73- | 4 <2, ca.1000, >1000<2000, >=1     | 744.9386 | 1.568433  | 3.08804563              |                  | 2.692073541      | 1       | . 1      | 0.761905  | ECHA typo lists 2mg/kg, but test dose | e: 1250        | https://www.e |
| 7620-77-1 | 7 >33, >300, >655, >2000, >2000    | 2447.428 | 0.74583   |                         |                  | 3.722889223      | 3 1     | . 1      | 0.794444  | 5g/kg, >5<15g/kg, 3g/kg, 15g/kg, 300  | (:3500         | https://www.e |
| 77-98-5   | 11 12.575, >12.5<125, 43.75, 47,   | 423.6832 | 0.5267    | 2.235528447             |                  | 2.963016785      | 5 1     | . 1      | 0.791173  | >300<2000, >12.5<125, 43.75, 12.5-7   | 5175           | https://www.e |
| 872-05-9  | 15 >5, >2000, >2000<5000, >5000    | 2841.763 | 0.640297  |                         |                  | 3.514069783      | 3 1     | . 1      | 0.826087  | 5ml/kg, 10ml/kg, 5gm/kg, >2000<500    | 0(3500         | https://www.e |

Examples where the 5 models (VT, NT, EPA, GHS, LD50) are in agreement with high confidence levels, with high margin between predictions and ECHA data



## Variability of In Vivo Data

### Rabbit skin irritation test

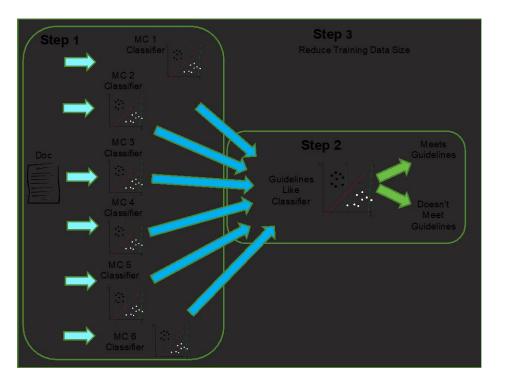
| Prior<br>type | Ι     | Π     | III                | IV    |
|---------------|-------|-------|--------------------|-------|
| I             | 86.5% | 4.0%  | 7.2%               | 2.4%  |
| I             | 10.4% | 34.9% | <b>34.9%</b> 31.1% |       |
| II            | 4.5%  | 4.0%  | 43.5%              | 48.0% |
| IV            | 0.6%  | 1.5%  | 9.5%               | 88.4% |

### **Rabbit eye irritation test**

| Prior<br>type | 1    | 2A    | 2B    | NC    |
|---------------|------|-------|-------|-------|
| 1             | 73%  | 16.1% | 0.4%  | 10.4% |
| 2A            | 4.2% | 32.9% | 3.5%  | 59.4% |
| 2B            | 0.2% | 4%    | 15.5% | 80.2% |
| NC            | 1.1% | 3.5%  | 1.5%  | 93.9% |



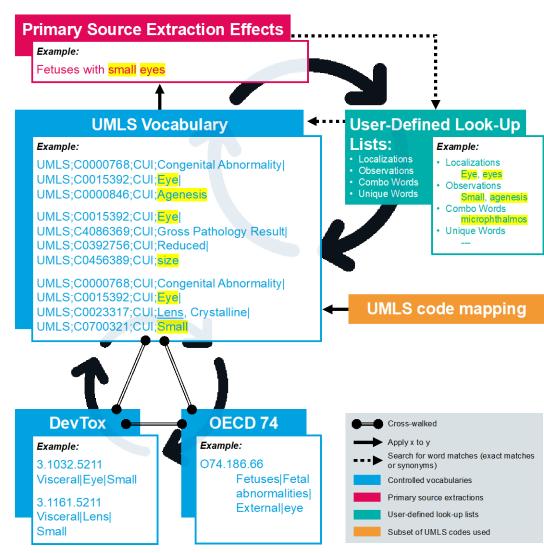
## Data Curation – is the LC50 really this variable?


| CASRN   | LC50 | LC50 unit | source      |
|---------|------|-----------|-------------|
| 79-11-8 | 1268 | mg/L      | eChemPortal |
| 79-11-8 | 0.18 | mg/L      | ChemIDplus  |

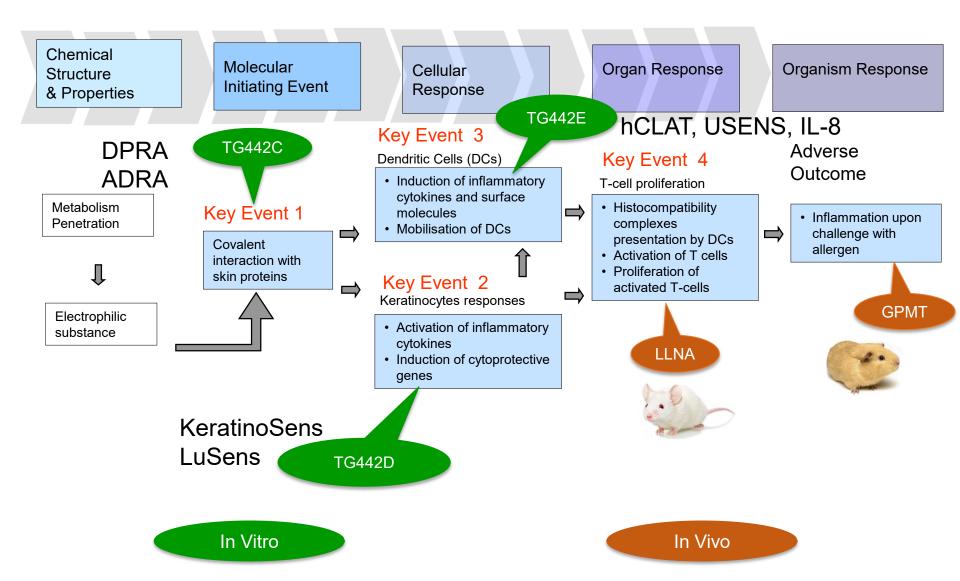
#### **Results and discussion**

| Effect levels              |              |                       |                    |        |                        |                         |                          |                                 |                          |                                                                                                 |                                                  |                                                |                                    |
|----------------------------|--------------|-----------------------|--------------------|--------|------------------------|-------------------------|--------------------------|---------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------|
| Sex:                       |              | male/female           |                    |        | NIH >                  | J.S. Natio<br>ibrary of | nal<br>Medicine <b>T</b> | OXNET                           | DXICOLOGY<br>ATA NETWORK |                                                                                                 |                                                  |                                                |                                    |
| Dose descriptor:           |              | LC50                  |                    |        | TOXNET > Ch            | emID <i>plus</i>        | > Substance              |                                 |                          |                                                                                                 | FAQs TOXNET                                      | 79-11-8                                        | raining Manua                      |
| Effect level:              |              | > 1 268 mg/L          | air (analytical)   |        | S.S.                   | 💦 🗚                     | NET DATAB                | ASE                             | Download                 | d Start New Query                                                                               | Modify Qu                                        | ery Sea                                        | rch History                        |
| Based on:                  |              | test mat.             |                    |        | <b>ب</b> ب             | Lite                    | • Browse • Adva          | anced                           |                          | Switch to                                                                                       | Summary Viev                                     | v                                              |                                    |
| Exp. duration:             |              | 4 h                   |                    |        | RN: 79-11<br>UNII: 5GE | I-8<br>084Y12           | 25G                      | cetic acid <mark>[</mark> B     |                          |                                                                                                 |                                                  |                                                | 0                                  |
| Acute Toxicity: inhalation |              |                       |                    |        | Note                   |                         | UTSVDIKZ                 | OP-UHFFFA                       | DYSA-N                   | Molecular Formula<br>C2-H3-CI-O2<br>Molecular Weight<br>94.4967                                 |                                                  | CI                                             |                                    |
| Currently viewing:         | 001 Key   Ex | perimental result     |                    |        | All Classi             | ifications              | Links to Resour          | ces Names & Sy                  | nonyms Regis             | stry Numbers Structure Desc                                                                     | iptors Toxicity                                  | Physical Prop                                  | perties                            |
| Administrative data        | Data source  | Materials and methods | Results and discus | ion Ap | Toxicity<br>Organism   | Туре                    | Route                    | Reported Do                     | Dose)                    | fect Source                                                                                     |                                                  |                                                |                                    |
| ouration of exposure:      |              | ca. 4 h               |                    |        | mouse<br>rat           | LD50<br>LC50            | inhalation               | s 250mg/kg (25<br>180mg/m3 (18  | 0mg/m3)                  | Archives Internationa<br>Vol. 116, Pg. 154, 19<br>Gigiena Truda i Profe<br>and Occupational Dis | 58.<br>essional'nye Z<br>seases. Vol. 1          | abolevaniya.<br>8(9), Pg. 32,                  | Labor Hygi<br>1974.                |
| Concentrations:            |              | 512 (± 150 mg/        | m3 and 1268 (± 77) | mg/m3  | rat<br>rat             | LD50<br>LD50            | oral                     | al 166000g/kg (<br>55mg/kg (55m | g/kg)                    | Russian Pharmacolo<br>Gigiena Truda i Profe<br>and Occupational Dis                             | gy and Toxico<br>essional'nye Z<br>eases. Vol. 1 | logy Vol. 41,<br>abolevaniya.<br>8(9), Pg. 32, | Pg. 113, 19<br>Labor Hygi<br>1974. |
| No. of animals per sex     | per dose:    | 5 animals per se      | ex per dose        |        | rat                    | LD50                    | ISUDCUTANEOU             | s 5mg/kg (5mg/                  | (g)                      | Toxicology and Appli                                                                            | eu Pharmacol                                     | ogy. voi. 22,                                  | rg. 303, 19                        |

LC50 = 1.268 and 0.18 mg/L instead?


# Automating Reference Data Identification




- Project with Oak Ridge National Labs (ORNL) and FDA CFSAN to apply text-mining (NLP) approaches & ML to identify high-quality data
- Semi-automated retrieval and evaluation of published literature (trained on Kleinstreuer et al. uterotrophic database)
- Apply to developmental toxicity studies (with ICCVAM DART EG)
  - Define literature search keywords, identify corpus
  - Extract/characterize study protocol details from regulatory guidelines: minimum criteria
  - Apply ML algorithms to identify high-quality studies, expert check



- Extract study details from prenatal developmental toxicity guideline studies
  - NTP legacy studies
  - ECHA submissions (expert reviewed for quality)
- Map results to controlled vocabularies/ontologies
  - UMLS (ToxRefDBv2.0)
  - EPA/BfR DevTox DB
  - OECD Harmonized Templates









- 2017 work plan: JRC/US/Canada co-leads
  - Aims to **substitute** the need for animal testing for skin sensitisation based on a combination of methods which, individually, predict key endpoint responses on the AOP: **Defined Approaches (DAs)**
  - Resulting guideline will be amenable to the agreement on Mutual Acceptance of Data (MAD)
- To meet regulatory requirements, need:
  - DAs that discriminate skin sensitisers from non sensitisers,
  - DAs that discriminate strong from moderate/weak sensitisers (GHS potency categories).
- Future work will cover DAs that address regulatory needs of quantitative risk assessment





- 68 members covering regulatory authorities, OECD national coordinators, validation experts, animal welfare and industry stakeholders, method developers, etc.
- Focusing on resolution of scientific issues:
  - 1. Finalization of curated reference data
  - 2. Performance comparison
  - **3.** Applicability Domain
  - 4. Confidence and Uncertainty
- Update, discussion, and feedback received at April 2020 WNT (virtual) meeting
- Virtual 2-day F2F meeting in June 2020 to discuss outstanding issues and working towards finalizing draft DA guideline
- Planning for final OECD DA guideline to be submitted for written approval by late 2020



- A significant number of chemicals used in the validation of non-animal test methods have been cosmetics ingredients
- NTP (*D. Germolec*) is supporting testing of a broad range of chemicals in internationally adopted test methods: DPRA, KeratinoSens, hCLAT.
  - Pesticide actives, agrochemical formulations, dermal excipients, personal care product ingredients, "challenge" chemicals
- Chemical nominations from multiple agencies
  - EPA: Office of Pesticides, Office of Pollution Prevention and Toxics, Office of Research and Development
  - Consumer Product Safety Commission
  - Food and Drug Administration
  - National Toxicology Program
  - Also formulations provided by Dow Chemical
- Testing began in late 2017 and will be completed in 2020



- Collaboration of Stakeholders EPA, NICEATM, PETA-ISC, CROs, Industry
- Reviewing available in vivo, in vitro and ex vivo test methods with respect to their relevance to human ocular anatomy, anticipated exposure scenarios, and the mechanisms of eye irritation/corrosion in humans.
- Compare/contrast to the human eye to identify features that are human relevant and to identify how they can be improved upon to increase their human relevance.
- Strengths and limitations of each method considered to assess which existing approaches are as good as or better than the currently used in vivo approach.

### Ex: Damage into the corneal stroma

#### CELLULAR RESPONSE

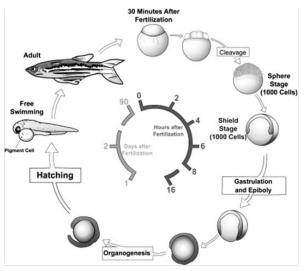
Upon penetration through the epithelium and into the corneal stroma, chemicals may induce

- cell stress responses, leading to changes in cell surface markers and retraction of keratocyte cell to cell network dendrites
- · necrotic or apoptotic damage
- $\bullet\,$  release of chemokines and cytokines, primarily IL-1a and TNFa
- · changes in relevant biomarkers
- induction of extracellular matrix / collagen synthesis
- activation of matrix metalloproteases result in loss of cell to cell adhesion and local tissue restructuring
- changes in cell metabolism/respiration
- cell death

- ORGAN RESPONSE
- increased corneal susceptibility to xenobiotics
- progressive ulceration and tissue necrosis
- notable corneal swelling and swelling-related corneal opacity
- corneal opacity due to cellular/molecular denaturation/coagulation
- sloughing and loss of epithelial tissues
- induction of wound healing response and basal cell regeneration/turnover
- recruitment of neutrophils / inflammatory response
- fibrosis, pannus, and neovascularization
- loss of endothelium

#### ORGANISM RESPONSE

- pain and nociceptive responses
- induction of lachrymation
- permanent impact upon vision
- secondary xenobiotic exposures and biological infection
- loss of vision




- The fish acute toxicity test is used to assess potential risk to fish species, and for other ecological regulatory needs associated with surface water contaminants.
- Test is typically conducted in three different fish species: a cold and warm freshwater species and a marine/estuarine species.
- Can this requirement be reduced to one or two species and still provide equivalent risk protection?
- Retrospective evaluation of existing data
  - LC50 values and experimental details extracted from ~ 700 acute fish toxicity studies submitted to EPA
  - Data were analyzed to determine if there are patterns among species in term of relative differences in acute toxicity.
  - LC50 values for each chemical/species pairing assigned to EPA and UN GHS hazard categories and evaluated to determine whether the species tested influenced risk/hazard categorization.
- Results will be used to determine if reduced testing will meet risk protection goals



- SEAZIT's inter-laboratory study
  - 39 chemicals (3 in duplicate)
  - Dose-range finder (DRF) and definitive testing phases
- DRF data available from 3 laboratories
  - DNTP-BSB has calculated BMC's for all chemicals
- NICEATM staff analyzing DRF data
  - Exercise 1: Comparing potencies within and across labs
  - Exercise 2: Reproducibility of results within a laboratory
  - Exercise 3: Comparing results across other databases









- Dec 2018 ESAC WG: non-animal-derived Abs can replace animal-derived Abs in the vast majority of applications.
  - EURL ECVAM report published May 15, 2020
  - Available at <u>https://ec.europa.eu/jrc/en</u>

- Dec 2019 NICEATM and PISC meeting: Developing strategies to increase the use of recombinant antibodies
- Coordinating with EURL ECVAM
- 4 subcommittee formed to address needed actions:
  - Education
  - Funding
  - Partnerships
  - Validation



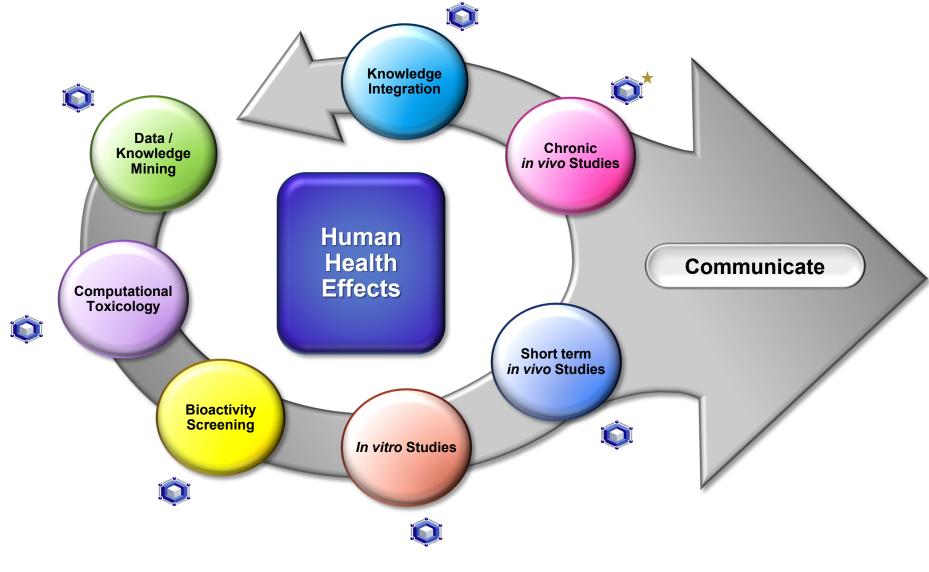




### **Meeting Report**

## Increasing the Use of Animal-free Recombinant Antibodies

doi:10.14573/altex.2001071


#### Abstract

Antibodies are used in a range of research, diagnostic, and regulatory applications. Traditional methods for producing such reagents involve the immunization of animals, which introduces variability into the methods that use them and is not aligned with efforts to replace and reduce animal use. Experts from academia, biotechnology, government, and animal

e National Institutes of Health in Bethesda, MD, USA to discuss the inant antibodies and their potential to replace antibodies derived d the actions that resulted to facilitate increased production and use

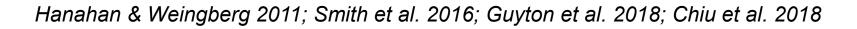


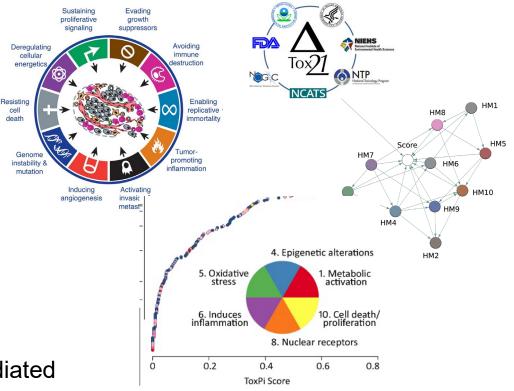
## **NTP Translational Toxicology Pipeline**



Coming Soon




- In Silico Carcinogenicity Protocol Work Group
  - Collaborating on a position paper describing what is available/needed in terms of experimental data and computational methods for the development of an in silico carcinogenicity protocol.
  - Organization follows the Key Characteristics of Cancer (Leadscope Project, led by Ray Tice)
- Receptor Mediated Effects in Carcinogenesis Review article
  - As an extension of work done above, collaborating with Cynthia Rider (NTP) and Al Luniwal (NAMSA) to write a review article detailing the current knowledge of receptor mediated carcinogenesis.
  - Focus is collecting evidence of receptor involvement in specific cancers in human and animal models, including whether the receptor effects are true drivers of carcinogenesis (ie. A molecular initiating event or key event) or are downstream effects.
- Cancer Data Collection for ICE
  - Assembling cancer data including carcinogenicity calls from various agencies (IARC, ROC, IRIS, OPP and NTP) and specific experimental data for NTP studies extracted from CEBS and formatting for inclusion in ICE.




### **Example: Carcinogenicity**

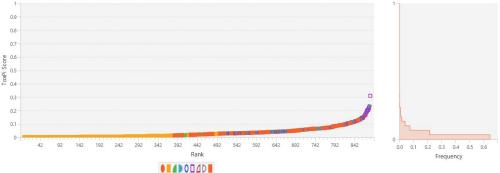
## Hallmarks of Cancer & Key Characteristics of Carcinogens

- Inflammation
- Oxidative stress
- Genotoxicity/instablitiy
- Angiogenesis
- Immortalization/proliferation
- Immunosuppression
- Invasion/metastasis
- Specific receptor- or enzyme-mediated



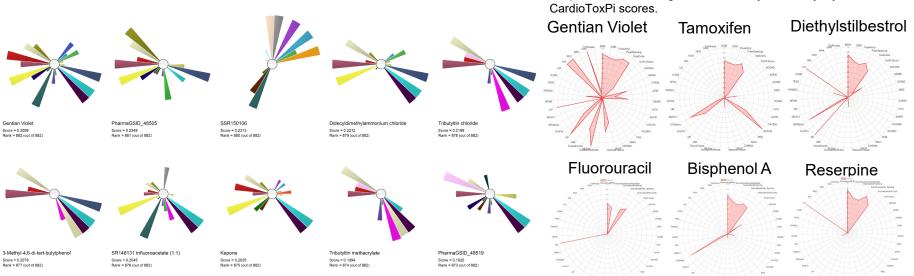





- Identifying a pipeline of available in vitro methods targeted towards "failure modes" associated with cardiotox (*J. Santos*):
  - Changes in action potential
  - Changes in inotropy
  - Changes in vasoactivity
  - Cardiac myocardial injury
  - Valvular injury/proliferation
  - Endothelial injury/coagulation
- NICEATM to conduct literature search and data extraction
- Using Tox21 HTS data to prioritize environmental chemicals with significant activity against CV targets

### CardioToxPi: Using Tox21 qHTS Data

### S. Krishna


|        |        |       |       |       |          |                   | Slice           |                                      | Effect                                                  | Slice Color |          |
|--------|--------|-------|-------|-------|----------|-------------------|-----------------|--------------------------------------|---------------------------------------------------------|-------------|----------|
|        |        |       |       |       |          |                   | ADORA           | Adenosine Receptor                   | Vasodialation, alterations in BP                        |             |          |
|        |        | PDE   | KCNH2 | CACNA | PR       |                   | ADRB            |                                      | Arrhythmia, Alterations in BP                           |             | 1-       |
|        | MAD    |       |       | ~     |          |                   | CHRM            | Muscarinic Acetylcholine Receptor    | Alterations in BP and HR, tachycardia                   |             |          |
|        |        |       |       |       | HTR      |                   | DRD             |                                      | Alterations in BP and HR, Vascular relaxation           |             | 0.9      |
| CHR    | INA    |       |       |       |          |                   | EDNR            | Endothelin Receptor                  | Alterations in BP, Can exert adverse effects during     |             | 015      |
|        |        |       |       |       | ED       | NR                | HTR             | Serotonine Receptor                  | Alterations in BP, Potential cardiac valvulopathy       |             |          |
| EGF    |        | 1     |       |       |          |                   | AVPR            | Vasopressin Receptor                 | Alterations in BP and HR, Cardiac hypertrophy           |             | 0.8      |
|        |        |       |       |       |          | DRD               | CHRNA           |                                      | Alterations in BP and HR                                |             |          |
|        |        |       |       |       |          |                   | CACNA           | Voltage-Gated Calcium Channel        | Alterations in BP, QT prolongation, Arrhythmia          |             | 0.7      |
|        |        |       |       |       |          | CHRM              | KCNH2           | Potassium Voltage Gated Channel      | Prolongation of QT interval of ECG                      |             |          |
|        |        |       |       |       |          | CHRM              | VEGF            | Vascular Endothelial Growth Factor   | Alterations in BP , Cardiac Ischemia                    |             | e 0.6    |
|        |        |       |       |       |          |                   | VascularTissue  | Vascular Tissue                      | Myocardial ischemia, cardiac Arrhythmias                |             | 9.0      |
|        |        |       |       | /     |          | ADRB              | Oxidative Stres | Oxidative Stress                     | Cellular Hypertrophy; Cardiac Cell Death                |             | io io    |
|        |        |       |       |       |          | Auna              | MtDysfunction   | Mitochondrial Dysfunction            | Cardiac dysfunction; Cardiomyopathy                     |             | 0.5      |
|        |        |       |       | 11//  |          |                   | TissueFactor    | Tissue Factor                        | Alterations in BP and ventricular hypertrophy           |             | OXPI 0.5 |
|        |        |       |       |       |          | ADORA             | PDE             | Phosphodiesterase                    | Alterations in cardiac contractility, HR and BP         |             | E 0.4    |
|        |        |       |       |       |          | ADONA             | MAO             | Monoamine Oxidase                    | Alterations in BP                                       |             |          |
|        |        |       |       |       |          |                   | JNK             | c-Jun N-terminal kinase              | Vascular injury, cardiac hypertrophy                    |             |          |
|        |        |       | 2     |       |          | the second second | TyrKinase       | Tyrosine Kinase                      | Alterations in BP, LV dysfunction, conduction           |             | 0.3      |
|        |        |       |       |       |          | TyrKinase         | AroPro          | Aromatase Protein                    | Ischemic heart disease                                  |             |          |
|        |        |       |       |       | <u> </u> |                   | ERAlpha         | Estrogen receptor Alpha              | Abnormal cardiac contractility, cardiac hypertrophy     |             | 0.2      |
|        |        |       |       |       |          |                   | NR3C1           | Glucocorticoid receptor              | Alterations in BP; Arrhythmia                           |             |          |
| \      | / /    |       |       |       |          | SAA               |                 | Peroxisome Proliferator              |                                                         |             | 0.1      |
|        |        | 11    |       |       |          |                   | PPARG           | Activated Receptor V                 | Cardiac hypertrophy , Atherosclerosis                   |             | 0.1      |
|        | / /    | · / . |       |       |          |                   | AP              | Activating Protein                   | Atherosclerosis                                         |             |          |
|        |        |       |       |       |          | NPA               | HIF             | Hypoxia Inducible Factor 1           | Ischaemia disease                                       |             | 0-       |
|        |        |       |       |       |          |                   | NFKB            | NF Kappa B                           | Atherosclerosis                                         |             |          |
|        | × ,    |       |       |       |          | PAI1              | TP53            | Tumor Protein p53                    | Alteration in cardiac function                          |             |          |
|        | $\sim$ |       |       |       | -        | PAIL              | ICAM1           | Intercellular adhesion molecule 1    | Markers of endothelial dysfunction                      |             |          |
| tAlpha |        |       |       |       |          |                   | IL6             | Interleukin 6                        | Markers of inflammation and oxidative stress            |             |          |
|        |        |       |       |       | tP.      | A                 | t-PA            | Tissue Type plasminogen activator    | Markers of endothelial dysfunction                      |             |          |
| NR3    | IC1    |       |       |       |          |                   | PAI -1          | Plasminogen activator inhibitor type | Markers of endothelial dysfunction                      |             |          |
|        | HE     |       |       |       | 1.6      |                   | NPA             | Natriuretic peptide A                | Release in response to elevation in LV filling pressure |             |          |
|        | nic    | NEVO  |       |       | AM       |                   |                 |                                      | Direct promotion of vascular dysfunction                |             |          |
|        |        | re ND | PPARG | TP53  |          |                   | SAA1            | Serum amyloid A1                     | through SAA within vascular tissues                     |             |          |

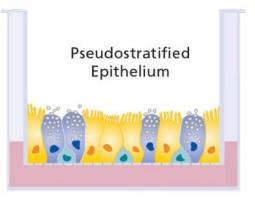
### Ranking of Chemicals by CardioToxPi

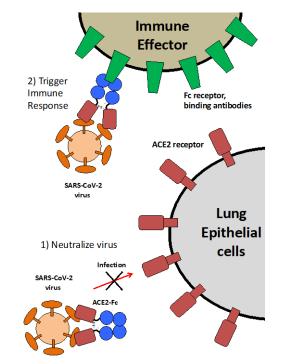


#### CardioToxPi results were compared to PODs from iPSC-derived cardiomyocytes evaluating effects on beats per minute (BPM), decayrise ratio (DRR), peak amplification, peak spacing, and total cell number (Sirenko et al.)

Example chemicals are displayed below, covering those with positive effects in both HTS-based CardioToxPi and iPSC cardiomyocyte endpoints, or showing effects in only cardiomyocytes, with minimal CardioToxPi scores.




### CardioToxPi images for 10 most active chemicals






## Leveraging human cell-based in vitro systems

- HEK293 and MVECs
- Reconstructed Human Airway Model at Air-Liquid Interface
  - Collaboration with NIEHS/DIR
    (S. Garantziotis, N. Martin)
- Pseudostratified, ciliated epithelium that is representative of the in vivo bronchial epithelium
- Treat with soluble ACE2 receptor attached to a human immunoglobulin Fc domain as a decoy to bind the spike protein of the SARS COV-2 virus.







### ILS/NICEATM Group

- Dave Allen
- Steven Morefield
- Judy Strickland
- Shannon Bell
- Neepa Choksi
- Cathy Sprankle

- Jon Hamm
- Kamel Mansouri
- Agnes Karmaus
- Xiaoqing Chang
- Amber Daniel
- Jim Truax

- Jaleh Abedini
- Bethany Cook
- Patricia Ceger
- John Rooney
- Lauren Browning

- Warren Casey (NIEHS)
- Dori Germolec (NIEHS)
- Elizabeth Maull (NIEHS)
- Matt Stout (NIEHS)
- ICCVAM representatives
- ICCVAM agency collaborators
- ICCVAM stakeholders



