NCATS update on Tox21 activities

Anton Simeonov, Ph.D.

Scientific Director, Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH

ICCVAM Virtual Meeting May 21, 2020

The Tox21 Library Screening Project

Collection of diverse chemicals

In vitro test methods, screening

High quality bioactivity data

Predictive models
(of bioactivity of a new chemical in vitro and, one day, in vivo)

>50 screening campaigns of the 10K Collection

Tox21 10K Chemical Collection: ~10,000 chemicals (nominated and procured by EPA, NIEHS, and NCATS) comprising approved drugs, failed drugs, pesticides, industrial chemicals, etc. Extensive Quality Control →

Tox21 Robot Platform

88 test samples

16 rows x 32 columns

32 rows x 48

1,408 test

samples

columns

352 test samples

96-well plate

384-well plate 4 x 96-well plates

1536-well plate 16 x 96-well plates

Dose-response-based screening Proc Natl Acad Sci 103:11473

Screening outcomes, next steps

- Rapid testing of chemicals enabled through robotic screening; largest collection of environmental chemicals and drugs assembled, multiple Quality Control (QC) measures in place.
- Deposition into the public domain of the largest-ever toxicology dataset (~100M datapoints), using crowdsourcing to move from data to knowledge.

 Evolution of project ecosystem and partnership governance: cross-partner projects, emphasis on increased sophistication of test systems, improved data dissemination.

Tox21 Public Data Browser - Chemicals

https://tripod.nih.gov/tox21/samples

Structure Search

Search...

Q

☆ Home / Tox21 Samples / Tox21_303376

Resveratrol

Tox21 Public Data Browser - Assays

https://tripod.nih.gov/tox21/assays

- > Tox21 data in public domain
 - 223 AIDs in PubChem
 - ~100 million data points

Protocol Name	Assay Target	Target Category	Cell Line	Cell Type
tox21-ahr-p1 ☆	AhR	NR	HepG2	Liver
tox21-ap1-agonist-p1	AP-1 agonist	SR	ME-180	Cervical Cancer
tox21-ar-bla-agonist-p1 ☆	AR-BLA agonist	NR	HEK293	Kidney
tox21-ar-bla-antagonist-p1	AR-BLA antagonist	NR	HEK293	Kidney
tox21-are-bla-p1 ☆	ARE	SR	HepG2	Liver
tox21-ar-mda-kb2-luc-agonist-p1 🏠	AR-MDA agonist	NR	MDA-MB-453	Breast Cancer
tox21-ar-mda-kb2-luc-agonist-p3	AR-MDA agonist (with antagonist)	NR	MDA-MB-453	Breast Cancer
tox21-ar-mda-kb2-luc-antagonist-p1	AR-MDA antagonist	NR	MDA-MB-453	Breast Cancer
tox21-ar-mda-kb2-luc-antagonist-p2	AR-MDA antagonist (lower agonist)	NR	MDA-MB-453	Breast Cancer
tox21-aromatase-p1 ☆	Aromatase	SR	MCF-7	Breast Cancer
tox21-car-agonist-p1	CAR agonist	NR	HepG2	Liver
tox21-car-antagonist-p1	CAR antagonist	NR	HepG2	Liver

The NCATS BioPlanet

Annotates 1,658 curated human pathways (~10,000 genes)

Frontiers journals are at the top of citation and

Translational Pharmacolo

THIS ARTICLE IS PART OF THE RESEARCH TOPIC < Articles Advancing Genomics for Rare Disease Diagnosis and ORIGINAL RESEARCH ARTICLE

Front. Pharmacol., 26 April 2019 | https://doi.org/10.3389/fphar.2019.00445

The NCATS BioPlanet – An Integrated Platform for Exploring the Universe of Cellular Signaling Pathways for Toxicology, Systems Biology, and Chemical Genomics

Ruili Huang¹*, 💄 Ivan Grishagin², 🔝 Yuhong Wang¹, 💄 Tongan Zhao¹, 🔔 Jon Greene², 🔛
John C. Obenauer ² , 🕒 Deborah Ngan ¹ , 🕒 Dac-Trung Nguyen ¹ , 🗎 Rajarshi Guha ¹ , 🚊 Ajit
Jadhav ¹ , 🔝 Noel Southall ¹ , 🔠 Anton Simeonov ¹ and 🚊 Christopher P. Austin ¹
¹ Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health,
Rockville, MD, United States
² Rancho BioSciences, San Diego, CA, United States
Chemical genomics aims to comprehensively define, and ultimately predict, the effects of
small molecule compounds on biological systems. Chemical activity profiling approaches must

consider chemical effects on all pathways operative in mammalian cells. To enable a strategic

Adopted by BMDExpress (NTP), Enrichr (Mount Sinai) for pathway analysis

Increasing the predictivity of *in vitro* assays: 3D tissue bioprinting

Hydrogel polymer is mixed with cells and loaded into syringe.

The printer "3D prints" the cell/gel mixture in a layer by layer approach.

1 day

1 week

2 weeks

The printed construct is incubated to allow the cells to form a tissue, and to enable proper cell differentiation.

Layers of the Epidermis: native skin *versus* 3D-bioprinted skin

Native Skin epidermis stratum spinosum (not keratinocytes) fibroblasts http://www.siumed.edu/~dking2/intro/IN005b.htm

3D-Bioprinted Skin

Generation of bioprinted skin tissues

Full thickness skin tissue (FTS)

1. Suspend fibroblasts in

Reconstructed human epidermis (RhE)

2. Add keratinocytes

4. Air-liquid interface culture for 8 days

shape on bottom side of 96-well transwell insert membrane

5. Add keratinocytes and submerge culture for 3 days

6. Air-liquid interface culture for 8 days

bioprinting gel

3. Add bioprinting gel to cover the U

Validation of bioprinted skin tissues for irritants

Trans-epithelial electrical resistance (TEER): values above 500 indicated integral barrier function in Reconstructed human epidermis (RhE) and full thickness skin (FTS)

Maturation of stratum corneum in both RhE and FTS

Functional studies in 3D tissues for potential irritants

Wei, et al., Frontiers in Bioengineering and Biotechnology 8:109, 2020

Ongoing CPP: profiling the Tox21 chemicals for sensitizers

Based on sensitization adverse outcome pathway (AOP), the following assays have been used/planned to profile the Tox21 chemicals for their sensitization potential:

- KeratinoSens assay: induction of Nrf2/ARE in keratinocytes
- Direct peptide reactivity assay (DPRA): covalent binding with cysteine/lysine
- hCLAT: activation of dendritic cells (surface marker CD86 CD54 expression in THP1 cells)
- Cytokine: IL-8 secretion

Learn More About NCATS

Website: www.ncats.nih.gov

Facebook: facebook.com/ncats.nih.gov

Twitter: twitter.com/ncats_nih_gov

YouTube: youtube.com/user/ncatsmedia

E-Newsletter: ncats.nih.gov/news-andevents/e-news/e-news.html

Email us: info@ncats.nih.gov