

Activities of the Developmental Neurotoxicity Health Effects Innovation Program

Helena Hogberg on behalf of the team

Division of the NTP, National Institute of Environmental Health Sciences NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

ICCVAM Public Forum May 26, 2022

DNT Health Effect Innovation (HEI) Program Management Team

DNTP

Mamta Behl* Former Team Lead

Jeremy Erickson PTB

Laura Hall OPO

Helena Hogberg PTB

Chris McPherson MTB

CMPB, Liaison

Shannah Witchey** Former STB

Neurobiology Core DIR

Jesse Cushman NL/DIR

Briana Bernstein NL/DIR (adjunct)

Leslie Wilson NL/DIR (adjunct) Division of the National Toxicology Program (DNTP) ODS (Office of Data Science) OPO (Office of Program Operations) CMPB (Comparative & Molecular Pathogenesis Branch) MTB (Mechanistic Toxicology Branch) STB (Systems Toxicology Branch) PTB (Predictive Toxicology Branch)

Division of Intramural Research (DIR) NL (Neurobiology Laboratory)

*Now Neurocrine Biosciences **Now with Inotiv

Importance of Assessing Developmental Neurotoxicity (DNT)

- Increase in prevalence of developmental disorders in the US and globally
 - WHO: 1 in 6 kids diagnosed
- In vivo DNT Guideline studies primary method of evaluation
 - Require an *a priori* trigger to be run
 - Time & resource intensive
 - Relevance of animal studies for human translation have been questioned
- Compounds with unknown DNT and NT potential remain untested

Need for a new Framework!!

Revised from Grandjean and Landrigan 2006, Lancet

n > 1,000

n > 100,000

Chemicals in use

NT in animals

3

Regulatory Focus on Developing New Frameworks

Toxicology and Applied Pharmacology 354 (2018) 3-6

FIFRA Scientific Advisory Panel Meeting

Contents lists available at ScienceDirect Tesicology and Applied Plannacology Perspectives Brief Communication 18-1 N 10 10 0 Toxicology and Applied Pharmacology journal homepage: www.elsevier.com/locate/taap Project TENDR: Targeting Environmental Consensus statement on the need for innovation, transition and Neuro-Developmental Risks. The TENDR implementation of developmental neurotoxicity (DNT) testing for regulatory purposes **Consensus Statement** Ellen Fritsche^a, Philippe Grandjean^b, Kevin M. Crofton^c, Michael Aschner^d, Alan Goldberg^{e,w}, Tuula Heinonen^f, Ellen V.S. Hessel^g, Helena T. Hogberg^h, Susanne Hougaard Bennekouⁱ, http://dx.doi.org/10.1289/EHP358 Pamela J. Lein^j, Marcel Leist^k, William R. Mundy¹, Martin Paparella^m, Aldert H. Piersmaⁿ, Magdalini Sachana^o, Gabriele Schmuck^p, Roland Solecki^q, Andrea Terron^r, Florianne Monnet-Tschudi^s, Martin F. Wilks^t, Hilda Witters^u, Marie-Gabrielle Zurich^s, Anna Bal-Price^{v,*} **FIFRA Scientific Advisory Panel** TOXICOLOGICAL SCIENCES, 167(1), 2019, 45-57 **Meeting Minutes and Final Report** Society of doi: 10.1093/toxsci/kfy211 Toxicology Advance Access Publication Date: November 23, 2018 No. 2020-02 OXFORD Forum www.toxsci.oxfordjournals.org Peer Review of the Use of New Approach Methodologies (NAMs) to Derive Extrapolation Factors and **Evaluate Developmental Neurotoxicity for Human** FORUM Health Risk Assessment International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing September 15-18, 2020

Magdalini Sachana,^{*,1} Anna Bal-Price,[†] Kevin M. Crofton,[‡] Susanne H. Bennekou,[§] Timothy J. Shafer,[¶] Mamta Behl,[∥] and Andrea Terron^{∥∣}

Battery of test: 12 in vitro assays + Zebrafish

Stakeholder Nominated Chemical Library

Phase 1: 115 chemical set

Selection Criteria

- Evidence of DNT in vivo
- Known human exposure
- Guideline study complete, lacking in vitro
- Suggested by multiple stakeholders
- Incomplete in vitro battery data

Currently tested in the battery in the individual labs, to be finalized in early fall

Phase 2: Chemical nominations received, selection is ongoing

Phase I chemicals

https://www.niehs.nih.gov/research/atniehs/assets/docs/developmental_neurotoxicity_screening_assay_chemical_list_508.pdf

Integrated Approach to Testing and Assessment (IATA) for DNT

Expert Group on DNT

Crofton and Mundy 2020

Guidance Document

To inform on the testing battery, its usage and interpretation. Case studies exemplifying different regulatory need e.g., prioritization, hazard assessment

2021- EPA Uses NAMs for DNT to support waiving a guideline DNT study

Dobrenieck et al., 2022 Regulatory Toxicology and Pharmacology

Bal-Price et al., 2018 ALTEX

Case study led by DNTP

Title: Organophosphorus flame retardants, a case study on the use of IATA for DNT to prioritize a class of compounds

Authors: Helena Hogberg, Jui-Hua Hsieh, Xiaoqing Chang, Nisha Sipes, Tim Shafer, Mamta Behl

- To be included in the OECD Guidance document on the use and interpretation of DNT battery for the aromatic OPFR
- Intended to provide an example for the use and application of the DNT battery for prioritization of a class of compounds
- Help inform organizations who are evaluating NAMs for use in prioritization and ultimately decision-making

Phased-out (BDE) or Extensively used (and studied): 2 Aromatic phosphates (non-halogenated): 6

Aliphatic organohalogens: 2

DNT- Data Integration and Visualization Enabling Resource

Phenol, isopropylated, phosphate (3:1) (68937-41-7): total outgrowth

Individual dose-response curves

Plate and well level information

Compare activity of compounds within an assay

Control variability in assay

https://sandbox.ntp.niehs.nih.gov/neurotox/

Summary of Findings

Sources of Uncertainty

Relevance to Human Exposures

GLUTAMATE

Cellular and Organ Effects **Organism Effects** Rodent in vivo

Consideration for Further Development of AOP

Helena T. Hogberg,⁸ Carol F. Kwiatkowski,^{5,9} Jamie D. Page,¹⁰ Anna Soehl,⁵ and Heather M. Stapleton⁴

Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate

Heather B. Patisaul,¹ Mamta Behl,^{2,3} Linda S. Birnbaum,^{2,3,4} Arlene Blum,^{5,6} Miriam L. Diamond,⁷ Seth Rojello Fernández,⁵

Monolayer in vitro cell culture Reduced response to memorv⁷⁴ glutamate S 3D in vitro cell culture Alternation in expression of glutamate NMDA

receptor 6 NAA and L aspartic decrease 6 Reduced levels of glutamate ⁴

Rodent in vivo Disruption of glutamate Disruption of NAA. creatine and lactic acid Increased levels of glutamate 8*

Neuronal death 7.8*

GABA (GAMMA-AMINOBUTYRIC ACID)

Cellular and Organ Effects **Organism Effects** Human Effects⁺ C Zebrafish Omega Monolayer in vitro cell culture · Adverse impacts or cognitive developme Hyperactivity¹ • Inhibition of GABA R⁹ Rodent in vivo ability, and fine moto 3D in vitro cell culture skills Impaired learning and Decrease in genes memory³ Adverse behavioral involved in GABA Increased ambulatory development includi production and behavior withdrawal, attentio signaling ⁶ problems, depression Decrease in GABA hyperactivity, and neurotransmitter aggression ³ Direction Zebrafish Decrease in IQ and working memory⁴ Altered levels of GABA neurotransmitter Social behavioral problems including Rodent in vivo responsible behavio GABA antagonist^{13*} and more externaliz Disruption of GABA behaviors[®] neurotransmitter 7* OTHER NEUROTRANSMITTERS Cellular and Organ Effects Organism Effects Human Effects⁺ Monolayer in vitro cell C Zebrafish Adverse impacts or culture cognitive developm Vulnerability to 2D: Increase in differentiaanxiety-like behavior ability, and fine mot tion of dopaminergic potentially due to

neurons¹⁴ decrease in dopamine¹ 🔞 3D in vitro cell culture Rodent in vivo Decrease in dopamine Increased ambulatory neurotransmitter behavior¹ C Zebrafish Dopamine levels decrease¹ Dopamine and dopamine signaling related genes decreased 15

 Decreased serotonin and histamine levels¹⁰ Rodent in vivo Dopamine signaling altered 13*

 Disruption in serotonin pathways 16,1 • Serotonin levels increased ¹⁶

Adverse impacts on Impaired learning and

development includ withdrawal, attentic problems, depression hyperactivity, and aggression ³ · Decrease in IQ and

Human Effects¹

skills²

working memory⁴ Social behavioral

including early langu

including early langu

Adverse behavioral

development includ

withdrawal, attentic

problems, depressio

hyperactivity, and aggression ³

 Decrease in IQ and working memory "

problems including

responsible behavio and more externalizi

Social behavioral

behaviors 5

skills

cognitive developm

including early lang

ability, and fine mot

Adverse behaviora

problems including responsible behavio and more externalizi behaviors ⁵

Patisaul et al., 2021 EHE

Ester Flame Retardants and Plasticizers

NEURONAL MORPHOLOGY AND FUNCTION

 Decrease in genes involved in cytoskeleton

organization 5,6 Synaptogenesis marker altered 5.6

Human Effects⁺ Adverse impacts on cognitive development, including early language ability, and fine motor ckille Adverse behavioral development including withdrawal, attention problems, depression hyperactivity, and aggression¹ Decrease in IQ and

working memory Social behavioral problems including less responsible behavior. and more externalizing behaviors 12

Example of using KEs + underlying mechanistic data in the absence of MIEs

- Overall, evidence available and the approach taken in this IATA case study allowed to achieve an acceptable level of certainty in prioritization of compounds for further testing
- It also allowed for DNT hazard identification and characterization of the OPFRs which was one of the purposes of the assessment
- The analysis could likely be used by organizations like the CPSC to prioritize compounds for further testing and use the mechanistic data generated here as weight of evidence

Future Directions for the DNT IVB

- Reduce uncertainty levels
 - Anchor data to AOPs
 - Confirm IVIVE models with in vivo data
 - Harmonization of protocols
 - Transferability of assays
 - Understand bioavailability in the different assays
- Explore ways of weighting the different assays
 - How many assays need to be positive for different regulatory purposes?
 - Should assays with higher biological activity be given more weight?
- Develop assays for key events currently missing
 - E.g., Myelination, differentiation and proliferation of astrocytes and microglia, ontogeny of neurotransmitters and receptors

- Assay development and enhancement in vitro and in vivo
- Incorporating testing of mixtures in the DNT IVB (collaboration with Combined Exposures and Mixtures Program)
- Further develop the IATA FR case study to build AOPs
- Develop additional case studies in collaboration with EPA
- Support the development of an EFSA data base with *in vivo* DNT studies
- Explore computational tools for:
 - PBPK (placenta model and young children)
 - IVIVE/IVIVC
- Prioritize chemicals for further testing
- Population variability and susceptibility

The DNT HEI and NICEATM Groups

17