New Models in the Validation Pipeline for ACD Hazard Testing

human Cell Line Activation Test: h-CLAT

Hitoshi Sakaguchi, Kao Corporation
Takao Ashikikaga, Shiseido Co., Ltd
Approach for Developing of in vitro Methods

It is imperative to understand the mechanisms of the sensitization (induction) phase of contact hypersensitivity (Vandebriel et al., 2005)

Induction phase

- **Structure alert**
- **Skin penetration (Bioavailability)**
- **Protein binding**
- **LC activation**
- **T-cell proliferation**

New in vitro method

- **Cell:** THP-1 cells (human monocyctic leukemia cell line)
- **Markers:** CD86 and CD54

based on Jowsey et al., 2006 J Appl Toxicol, 26, 341-350

LC: Langerhans cells

Lymph node
Human Cell Line Activation Test (h-CLAT)*

Procedure

- **THP-1** 1x10^6 cells /mL
- Culture with chemicals, 8 doses based on CV75
- 24h
- Flow cytometric analysis
 - Cell staining (CD86 & CD54)
 - FcR blocking

Relative Fluorescence Intensity (RFI)

\[
RFI = \frac{MFI_{chemical treated cells} - MFI_{isotype control cells}}{MFI_{vehicle control cells} - MFI_{vehicle isotype control cells}} \times 100
\]

- MFI = geometric mean fluorescence intensity

Prediction Model

- Viability ≥ 50% by Propidium Iodide
- Positive criteria: CD86 RFI ≥ 150% and/or CD54 RFI ≥ 200%
- Positive: 2 of 3 independent data at any dose should exceed the positive criteria

*: Ashikaga et al., 2006 Toxicol In Vitro 767-73., Sakaguchi et al., 2006 Toxicol In Vitro 774-84.
DNCB and Ni (typical allergens) enhanced both CD86 and CD54 expressions but SLS (non-allergen) did not.

Miyazawa et al., Toxicology in Vitro 2007
Today’s presentation

• **Predictive capacity**
 • Evaluation of 117 chemicals by the h-CLAT to compare with LLNA

• **Applicability domain**
 • Applicability domain based on the data base

• **Classification of skin sensitization potency**
 • Using EC150 and EC200 values as the indicator

• **Inter-laboratory study**
 • Ring Trials in the COLIPA (5 labs) and Japan (7 labs)
Results of 117 Test Chemicals

| Chemical | RULM | Human Rats | RULM | Wistar | RULM | Human Rats | RULM | Wist
Comparative evaluation with LLNA and human

h-CLAT vs LLNA

<table>
<thead>
<tr>
<th></th>
<th>h-CLAT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+(85)</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>LLNA</td>
<td>-(32)</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

- **Sensitivity:** 75/85 (88%)
- **Specificity:** 24/32 (75%)
- **Positive predictivity:** 75/83 (90%)
- **Negative predictivity:** 24/34 (71%)
- **Accuracy:** 99/117 (85%)

h-CLAT vs human

<table>
<thead>
<tr>
<th></th>
<th>h-CLAT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+(51)</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Human</td>
<td>-(16)</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

- **Sensitivity:** 46/55 (84%)
- **Specificity:** 11/16 (69%)
- **Positive predictivity:** 44/51 (88%)
- **Negative predictivity:** 11/20 (55%)
- **Accuracy:** 57/71 (80%)

Good predictive capacity, but some false negative / positive

Nukada et al., WC7 2009, Ashikaga et al., ATLA 2010, Nukada et al., ESCD 2010
<table>
<thead>
<tr>
<th>False negative (1) : Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying dose based on cytotoxicity</td>
</tr>
<tr>
<td>Hexyl cinnamic aldehyde</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Abietic acid</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phthalic anhydride</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The chemical with poor water solubility is one of limitation

Ashikaga et al., ATLA 2010

*: Calculated with "Water frag" software.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoyl peroxide</td>
<td>Metabolic activity can change the structure</td>
</tr>
<tr>
<td>Geraniol</td>
<td>Metabolic activity or air oxidation can change the structure</td>
</tr>
<tr>
<td></td>
<td>(Basketter et al., Contact Dermatitis, 47(3), 161-164, 2002).</td>
</tr>
<tr>
<td></td>
<td>Oxidation products of geraniol (Geraniol and Neral) augmented CD54 expression</td>
</tr>
<tr>
<td></td>
<td>(Kosaka et al., SOT 2008).</td>
</tr>
<tr>
<td>Isoeugenol</td>
<td>Oxidation involves sensitising potential</td>
</tr>
<tr>
<td></td>
<td>(Bertrand et al., Chem Res Toxicol., 10(3), 335-343, 1997).</td>
</tr>
<tr>
<td>Abietic acid</td>
<td>Air oxidation involves expression of sensitizing potential</td>
</tr>
<tr>
<td></td>
<td>(Basketter et al., Food Chem Toxicol 33, 1051-1056, 1995).</td>
</tr>
</tbody>
</table>

The h-CLAT had limitation for some pro- and pre-hapten
Several weak sensitizers could not enhance CD86/CD54 expression

Ashikaga et al., ATLA 2010

<table>
<thead>
<tr>
<th>Weak sensitizers by LLNA classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Bromohexane</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LLNA class</th>
<th>Number of tested chemicals</th>
<th>Number of false negatives</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme</td>
<td>8</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Strong</td>
<td>16</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>Moderate</td>
<td>24</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>Weak</td>
<td>23</td>
<td>5</td>
<td>78</td>
</tr>
</tbody>
</table>
EC150 / 200 (Estimated concentration of RFI 150 / 200)

The intermediate value of three experiments was defined as EC150 or EC200.

Calculated based on the calculational procedure of LLNA EC3
Minimum Induction Threshold of h-CLAT – MIT (h-CLAT) -
determined as a smaller value of either EC150 or EC200

Significant correlation with LLNA EC3
Might be useful to classify...

LLNA EC3 ...?
Proposed GHS subcategories ...?

Ref. Proposed GHS subcategories for skin sensitization based on LLNA EC3 and the example of prediction

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Animal test results (using LLNA data)</th>
<th>Cut off (h-CLAT)</th>
<th>Accuracy(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A (Strong sensitizer)</td>
<td>EC3 ≤ 2%</td>
<td>MIT 10 μg/mL</td>
<td>78.8</td>
</tr>
<tr>
<td>1B (Weak sensitizer)</td>
<td>EC3 > 2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COLIPA and Japanese Ring Trials

Purpose
- Protocol transferability
- Inter-laboratory reproducibility
- Predictive capacity

Goals
- Identify unexpected problems with either test design or procedures
 - Protocol optimization/standardization
- Identify problems with data analysis / interpretation
 - Prediction model refinement

Members
- **COLIPA:** P&G, L’Orel, Henkel-Phnion, Shiseido and Kao
- **Japan:** Kanebo Cosmetics, Kose, Lion, Nippon Menard Cosmetic, Pola Chemical Industries, Shiseido and Kao
COLIPA 4th Ring Trial summary data

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Potency</th>
<th>Lab B</th>
<th>Lab C</th>
<th>Lab D</th>
<th>Lab E</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td>Strong</td>
<td>+ (2/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td>Methyldibromo glutaronitrile</td>
<td>Strong</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (2/3)</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td>2-Mercaptobenzothiazole</td>
<td>Strong</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td>Cinnamic Aldehyde</td>
<td>Moderate</td>
<td>- (1/3)</td>
<td>+ (3/3)</td>
<td>+ (2/3)</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td>Tetramethylthiuram Disulfide</td>
<td>Moderate</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
</tr>
<tr>
<td>Glycerol</td>
<td>NS</td>
<td>- (0/3)</td>
<td>- (0/3)</td>
<td>- (0/3)</td>
<td>- (0/3)</td>
</tr>
<tr>
<td>Salicylic Acid</td>
<td>NS</td>
<td>+ (3/3)</td>
<td>+ (3/3)</td>
<td>+ (2/3)</td>
<td>+ (3/3)</td>
</tr>
</tbody>
</table>

7 test chemicals (5 allergens, 2 non-allergens), 4 labs
- Cinnamic Aldehyde: one false negative data
- Salicylic acid: false positive in all labs
- Good inter-laboratory reproducibility
- Almost good predict performance

Sakaguchi et al., Toxicology in Vitro 2010
Japanese 1st Ring Trial

- 3 test chemicals (2 allergens, 1 non-allergen), 7 labs
- Test doses were same in all labs

Good inter-lab reproducibility
Good predict performance

Ashikaga et al., AATEX 2008
Summary

• **Predictive capacity (117 chemicals)**
 - Good prediction performance (accuracy: 85%/80% between the h-CLAT/human and LLNA) was observed.

• **Applicability domain**
 - Possible applicability domain was solubility, metabolic activity, sensitivity, etc.

• **Classification of skin sensitization potency**
 - MIT might be useful to predict the allergic potency of chemicals classified by GHS classification

• **Inter-laboratory study**
 - COLIPA: 15 chemicals, approx 85% predicted correctly
 - Japan: 8 chemicals, approx 96% predicted correctly
 - Good inter-lab reproducibility and predictive performance
ECVAM prevalidation study

• **Liaison:**
 - JaCVAM and ICCVAM

• **Test methods:**
 - Direct Peptide Reactivity Assay (DPRA)
 - Myeloid U937 Skin Sensitization Test (MUSST)
 - human Cell Line Activation Test (h-CLAT)

• **Main purpose**
 - The assessment of the robustness and reliability

• **Experimental design**
 - 24 coded chemicals in three (or four) laboratories each for the assessment of the within- and between-laboratory reproducibility
Acknowledgments

Shiseido Co., Ltd
Sakiko Sono
Makie Ishikawa
Katsurako Yoneyama
Morihiko Hirota
Shigenobu Hagino
Hiroshi Itagaki

Kao Corporation
Masaaki Miyazawa
Yuuko Nukada
Nanae Kosaka
Yukiko Terada
Yuuichi Ito
Hiroyuki Suzuki

Thank you for your attention