# NICEATM

National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods

# ICCVAM

Interagency Coordinating Committee on the Validation of Alternative Methods



The Murine Local Lymph Node Assay: 5-Bromo-2-deoxyuridine Enzyme-linked Immunosorbent Assay (LLNA: BrdU-ELISA)

> Judy Strickland, Ph.D., DABT ILS Inc., Contractor Supporting NICEATM

ICCVAM Workshop Series on Best Practices for Regulatory Safety Testing: Assessing the Potential for Chemically Induced Allergic Contact Dermatitis

January 20, 2011

William H. Natcher Conference Center National Institutes of Health Bethesda, MD









# Overview of the LLNA: BrdU-ELISA

- Developed by Takeyoshi et al. as a nonradioactive LLNA<sup>1</sup>
- Measures BrdU incorporation in draining auricular lymph nodes as a measure of lymph node cell proliferation
  - BrdU is a thymidine analog, incorporated into proliferating cell DNA in a manner similar to radioisotope incorporation in the LLNA
  - ELISA detects peroxidase-labeled BrdU antibody
    - Colorimetric reaction measured with a plate reader

<sup>1</sup>Takeyoshi et al. 2001. Toxicol Lett. 119:203-8.

## LLNA Test Method Protocol



## LLNA: BrdU-ELISA Test Method Protocol - 1



## LLNA: BrdU-ELISA Test Method Protocol - 2

- Lymphocyte suspension
  - Crush lymph nodes
  - Pass through #70 nylon mesh
  - Suspend lymph node cells in 15 mL physiological saline
  - (return to webpage to view Cell Suspension video clip)





Video courtesy of Dr. Takeyoshi – CERI, Japan



## LLNA: BrdU-ELISA Test Method Protocol - 3

- Sample Processing
  - 100 µl cell suspension added to flat-bottom microplate wells
  - Centrifuge (300 x g, 10 minutes)
  - Remove supernatants and dry
  - (return to webpage to view Supernatant Removal video clip)



Video courtesy of Dr. Takeyoshi – CERI, Japan



# LLNA: BrdU-ELISA Test Method Protocol – ICCVAM Recommendations - 1

- $SI \ge 1.6$  decision criterion
- Minimum of four animals per group
- Individual animal data
  - Allows for statistical analysis for detection of outliers and comparison to vehicle control group
- Concurrent vehicle control
  - Used as the baseline to determine any increase in lymphocyte proliferation of treated animals
- Concurrent positive control
  - Demonstrates that the assay as conducted is capable of producing a positive response
  - Required by U.S. agencies
    - Absence of a concurrent positive control could result in a requirement to repeat negative results

#### LLNA: BrdU-ELISA Test Method Protocol – ICCVAM Recommendations - 2

- Dose selection with adequate scientific rationale
  - Select 3 consecutive doses from an appropriate concentration series (100%, 50%, 25%, 10%, 5%, 2.5%, 1%, 0.5%, etc.)
  - Consider existing toxicological information (acute toxicity, dermal irritation)
  - Consider structural and physicochemical information on test material or structurally related test material
  - In absence of such existing information a prescreen test may be necessary
- Reduced LLNA: BrdU-ELISA
  - Should be used routinely to determine the allergic contact dermatitis (ACD) hazard potential of chemicals and products
    - If existing information suggests a substance might have ACD hazard potential AND dose-response information is needed, consider testing in the multi-dose LLNA: BrdU-ELISA
  - Reduces animal numbers by using only the high dose group
    - Maximum concentration that doesn't induce overt systemic toxicity and/or excessive local skin irritation
    - Adhere to all other LLNA: BrdU-ELISA protocol specifications

#### Advantages of Using the LLNA: BrdU-ELISA

- Less hazardous, no radioisotopes
  - Makes LLNA available to laboratories where radioactivity is discouraged/prohibited
    - Refinement: avoids potential pain and distress associated with a positive response in guinea pig tests
  - Avoids costs associated with radioactive waste
- Reduction vs. guinea pig tests
  - Four mice per dose group
- Convenient and rapid assay
  - Commercially available reagent kits
- Training and time considerations are similar to LLNA

# NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA

- Reviewed available data and information regarding the usefulness and limitations to assess the ACD hazard potential of chemicals and products
- Determined validation status
  - Accuracy: sensitivity and specificity
  - Reproducibility for identifying LLNA sensitizers and nonsensitizers
  - Scope of substances tested
  - Availability of a standardized test method protocol
- Independent international scientific peer review panel

#### NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Validation Database - 1

- 47 total substances; 43 with comparative traditional LLNA data
- Intralaboratory data
  - Individual animal data for 12 substances tested 2 to 6 times in one laboratory<sup>1-7</sup>
- Interlaboratory data
  - Individual animal data from Phase II of the Japanese Society for Alternative Animal Experiments (JSAAE) validation study<sup>8</sup>
    - 10 coded substances tested in three to seven laboratories
      - 4/10 substances not previously tested in the LLNA: BrdU-ELISA

<sup>1</sup>Takeyoshi et al. 2003. Toxicology. 191:259-263; <sup>2</sup>Takeyoshi et al. 2004. Exp Anim 53:171-173; <sup>3</sup>Takeyoshi et al. 2005. J Appl Toxicol 25:129-134; <sup>4</sup>Takeyoshi et al. 2006. J Appl Toxicol 26:5-9; <sup>5</sup>Takeyoshi et al. 2007. 6<sup>th</sup> World Congress Presentation; <sup>6</sup>Takeyoshi et al. 2008. J Appl Toxicol 28:530-534; <sup>7</sup>Takeyoshi et al. unpublished data; <sup>8</sup>Kojima et al. 2011. J Appl Toxicol 31: 63-74

#### NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Validation Database - 2

- Test method reference substances (n = 43)
  - Includes 16/18 required (and 2/4 optional) LLNA performance standards reference substances

| Trad                                                         | Traditional LLNA<br>Nonsensitizers<br>(n = 11)   |                                                |                                 |
|--------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------|
| 3-Aminophenol                                                | Diethyl maleate                                  | Imidazolidinyl urea                            | Diethyl phthalate               |
| Aniline                                                      | <b>2,4-</b>                                      | Isoeugenol                                     | Dimethyl isophthalate           |
| Benzoquinone                                                 | Dinitrochlorobenzene                             | Isopropyl myristate                            | Glycerol                        |
| 4-Chloroaniline                                              | Diphenylcyclopropenone                           |                                                | Hexane                          |
| 5-Chloro-2-methyl-4-                                         | Ethyl acrylate                                   | 2-Mercaptobenzothiazole                        | 2-Hydroxypropyl                 |
| isothiazolin-3-one                                           | Ethylene glycol                                  | 4-Methylaminophenol                            | methacrylate                    |
| <b>Cinnamic alcohol</b>                                      | dimethacrylate                                   | sulfate                                        | Isopropanol                     |
| Cinnamic aldehyde                                            | Eugenol                                          | Nickel sulfate                                 | Lactic acid                     |
| <i>trans</i> -Cinnamic                                       | Formaldehyde                                     | Phenyl benzoate                                | Methyl salicylate               |
| aldehyde                                                     | Glutaraldehyde                                   | 4-Phenylenediamine                             | Propylene glycol                |
| <b>Citral</b><br><b>Cobalt chloride</b><br>Cyclamen aldehyde | Hexyl cinnamic<br>aldehyde<br>Hydroxycitronellal | Sodium lauryl sulfate<br>Trimellitic anhydride | Salicylic acid<br>Sulfanilamide |

Abbreviations: n = number of substances.

Bold type = LLNA performance standards reference substance.

#### NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Test Method Accuracy - 1

#### LLNA: BrdU-ELISA vs. LLNA (n = 43)

| SI<br>Decisio<br>n<br>Criterion | n  | Accuracy       | Sensitivity     | Specificity     | False<br>Positive<br>Rate | False<br>Negative<br>Rate | Positive<br>Predictivity | Negative<br>Predictivity |
|---------------------------------|----|----------------|-----------------|-----------------|---------------------------|---------------------------|--------------------------|--------------------------|
| ≥2.0                            | 43 | 95%<br>(41/43) | 94%<br>(30/32)  | 100%<br>(11/11) | 0%<br>(0/11)              | 6%<br>(2/32)              | 100%<br>(30/30)          | 85%<br>(11/13)           |
| ≥1.8                            | 43 | 91%<br>(39/43) | 94%<br>(30/32)  | 82%<br>(9/11)   | 18%<br>(2/11)             | 6%<br>(2/32)              | 94%<br>(30/32)           | 82%<br>(9/11)            |
| ≥1.6                            | 43 | 95%<br>(41/43) | 100%<br>(32/32) | 82%<br>(9/11)   | 18%<br>(2/11)             | 0%<br>(0/32)              | 94%<br>(32/34)           | 100%<br>(9/9)            |
| ≥1.4                            | 43 | 93%<br>(40/43) | 100%<br>(32/32) | 73%<br>(8/11)   | 27%<br>(3/11)             | 0%<br>(0/32)              | 91%<br>(32/35)           | 100%<br>(8/8)            |

Abbreviations: n = number of substances; SI = stimulation index



13

#### NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Test Method Accuracy - 2



#### NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Intralaboratory Reproducibility

- Individual animal data for 12 substances tested (2-6 times) in one laboratory<sup>1-7</sup>
  - 10/12 substances were LLNA sensitizers
    - Repeat positive LLNA: BrdU-ELISA results (SI  $\geq$  1.6) for 8/10 LLNA sensitizers
    - One positive LLNA: BrdU-ELISA result (SI  $\geq$  1.6) and one negative LLNA: BrdU-ELISA result (SI < 1.6) for 2/10 LLNA sensitizers
  - 2/12 substances were LLNA nonsensitizers
    - Repeat negative LLNA: BrdU-ELISA results (SI < 1.6) for 1/2 LLNA nonsensitizers
    - Repeat positive LLNA: BrdU-ELISA results (SI  $\geq$  1.6) for 1/2 LLNA nonsensitizers

<sup>1</sup>Takeyoshi et al. 2003. Toxicology. 191:259-263; <sup>2</sup>Takeyoshi et al. 2004. Exp Anim 53:171-173; <sup>3</sup>Takeyoshi et al. 2005. J Appl Toxicol 25:129-134; <sup>4</sup>Takeyoshi et al. 2006. J Appl Toxicol 26:5-9; <sup>5</sup>Takeyoshi et al. 2007. 6<sup>th</sup> World Congress Presentation; <sup>6</sup>Takeyoshi et al. 2008. J Appl Toxicol 28:530-534; <sup>7</sup>Takeyoshi et al. unpublished data. **ICCVAM** 

15

## NICEATM-ICCVAM Evaluation of LLNA: BrdU-ELISA – Interlaboratory Reproducibility

- Individual animal data from Phase II of the JSAAE validation study<sup>1</sup>
  - 10 coded substances tested in three to seven laboratories
    - 7/10 substances were LLNA sensitizers
    - 3/10 substances were LLNA nonsensitizers
  - Concordant results for 9/10 substances among all the laboratories tested
    - One LLNA nonsensitizer with concordant positive LLNA: BrdU-ELISA results (SI ≥ 1.6)
  - Discordant results for 1/10 substances among 2/7 laboratories tested
    - Substance was an LLNA nonsensitizer
    - LLNA: BrdU-ELISA results were positive (SI ≥ 1.6) in two laboratories and negative (SI < 1.6) in 5 laboratories</li>

<sup>1</sup>Kojima et al. 2011. J Appl Toxicol 31: 63-74

## ICCVAM Test Method Recommendations for LLNA: BrdU-ELISA – Usefulness and Limitations

#### <u>Usefulness</u>

- Can be used to identify potential skin sensitizers or nonsensitizers
  - Use SI  $\geq$  1.6 to identify potential sensitizers
  - Produced no false negatives, relative to traditional LLNA

#### **Limitations**

- Borderline weak positives (1.6 < SI < 1.9) have a slight potential to be false positives
  - If not consistent with predicted ACD hazard potential, consider all other available information
    - Nature of dose response
    - Evidence of systemic toxicity and/or excessive local skin irritation
    - Where appropriate, statistical significance
    - Structural relationship to known skin sensitizers
- Same limitations as those associated with LLNA applicability domain except for nickel

#### LLNA: BrdU-ELISA International Acceptance

- OECD TG 442B Skin Sensitization: Local Lymph Node Assay: BrdU-ELISA
  - Adopted July 22, 2010
  - Available at <u>http://www.oecd-</u> <u>ilibrary.org/environment/test-no-442b-skin-</u> <u>sensitization\_9789264090996-en</u>
  - Based on ICCVAM-recommended LLNA: BrdU-ELISA protocol
  - Expected to result in broader use of LLNA tests, which will further reduce and refine animal use for ACD hazard assessments on a global basis, while ensuring human safety



# Poster Available for Viewing

 See poster at this workshop (Room C1/C2):
ICCVAM Evaluation and International Acceptance of the Nonradioactive LLNA: BrdU-ELISA Test Method
A Jacobs<sup>1</sup>, J Matheson<sup>2</sup>, M Wind<sup>2</sup>, V Malshet<sup>1</sup>, J Toy<sup>1</sup>, J Strickland<sup>3</sup>, D Allen<sup>3</sup>, T Burns<sup>3</sup>, F Stack<sup>3</sup>, W Stokes<sup>4</sup>
<sup>1</sup>U.S. FDA, Silver Spring, MD; <sup>2</sup>U.S. CPSC, Bethesda, MD;
<sup>3</sup>ILS, Inc., Contractor Supporting NICEATM, RTP, NC;
<sup>4</sup>NICEATM/NTP/NIEHS/NIH/DHHS, RTP, NC

# Acknowledgements

 ICCVAM and NICEATM gratefully acknowledge the following individuals and institutions for submitting data to NICEATM for the LLNA: BrdU-ELISA evaluation

| Masahiro Takeyoshi, Ph.D.                      | Hajime Kojima, Ph.D.                                      |  |  |  |
|------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Chemicals Evaluation and<br>Research Institute | Japanese Center for the Validation of Alternative Methods |  |  |  |
| Saitama, Japan                                 | National Institute of Health<br>Sciences                  |  |  |  |
|                                                | Ministry of Health, Labour and Welfare                    |  |  |  |
|                                                | Tokyo, Japan                                              |  |  |  |

# Additional Acknowledgements

- ICCVAM
- ICCVAM Interagency Immunotoxicity Working Group
- ICCVAM Independent Scientific Peer Review Panel
- NICEATM Staff