NICEATM

National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods

ICCVAM

Interagency Coordinating Committee on the Validation of Alternative Methods

The Murine Local Lymph Node Assay: Daicel Chemical Industries, Ltd., Based on ATP Content (LLNA: DA)

> Eleni Salicru, Ph.D. ILS Inc., Contractor Supporting NICEATM

ICCVAM Workshop Series on Best Practices for Regulatory Safety Testing: Assessing the Potential for Chemically Induced Allergic Contact Dermatitis

January 20, 2011

William H. Natcher Conference Center National Institutes of Health Bethesda, MD

Overview of the LLNA: DA

- Developed by Daicel Chemical Industries, Ltd., as a nonradioactive LLNA^{1, 2}
- Measures ATP content in draining auricular lymph nodes as an estimate of cell number at the end of cell proliferation
 - ATP content is favorably correlated with living cell number
 - ATP content is assessed by a luciferin-luciferase assay to measure bioluminescence (relative luminescence units [RLU])

 $ATP + Luciferin + O_2 \xrightarrow{\text{Luciferase}} Oxyluciferin + AMP + PP_i + CO_2 + Light$

• ATP bioluminescence shown to have a strong correlation between thymidine uptake in a variety of cell lines³

¹Yamashita et al. 2005. AATEX. 11:136-144. ²Idehara et al. 2008. J Pharmacol Toxicol Methods. 58:1-10. ³Crouch et al. 1993. J Immunol Methods. 160:81-88.

LLNA Test Method Protocol

NICEATM-ICCVAM - Advancing Public Health and Animal Welfare

3

Technical points:

Schematic courtesy of Dr. Kenji Idehara, Daicel Chemical Industries, Ltd.

ICCVAM

Technical points:

Schematic courtesy of Dr. Kenji Idehara, Daicel Chemical Industries, Ltd.

ICCVAM

Technical points:

Schematic courtesy of Dr. Kenji Idehara, Daicel Chemical Industries, Ltd.

ICCVAM

NICEATM

7

LLNA: DA Test Method Protocol – ICCVAM Recommendations - 1

- SI ≥ 1.8 decision criterion
- Minimum of four animals per group
- Individual animal data
 - Allows for statistical analysis for detection of outliers and comparison to vehicle control group
- Concurrent vehicle control
 - Used as the baseline to determine any increase in lymphocyte proliferation of treated animals
- Concurrent positive control
 - Demonstrates that the assay as conducted is capable of producing a positive response
 - Required by U.S. agencies
 - Absence of a concurrent positive control could result in a requirement to repeat negative results

8

LLNA: DA Test Method Protocol – ICCVAM Recommendations - 2

- Dose selection with adequate scientific rationale
 - Select 3 consecutive doses from an appropriate concentration series (100%, 50%, 25%, 10%, 5%, 2.5%, 1%, 0.5%, etc.)
 - Consider existing toxicological information (acute toxicity, dermal irritation)
 - Consider structural and physicochemical information on test material or structurally related test material
 - In absence of such existing information a prescreen test may be necessary
- Reduced LLNA: DA
 - Should be used routinely to determine the allergic contact dermatitis (ACD) hazard potential of chemicals and products
 - If existing information suggests a substance might have ACD hazard potential AND dose-response information is needed, consider testing in the multi-dose LLNA: DA
 - Reduces animal numbers by using only the high dose group
 - Maximum concentration that doesn't induce overt systemic toxicity and/or excessive local skin irritation
 - Adhere to all other LLNA: DA protocol specifications

Advantages of Using the LLNA: DA

- Less hazardous, no radioisotopes
 - Makes LLNA available to laboratories where radioactivity is discouraged/prohibited
 - Refinement: avoids potential pain and distress associated with a positive response in guinea pig tests
 - Refinement: no injection of labeling agent required
 - Avoids costs associated with radioactive waste
- Reduction vs. guinea pig tests
 - Four mice per dose group
- Convenient and rapid assay
 - Commercially available reagent kits
- Training and time considerations are similar to LLNA

NICEATM-ICCVAM Evaluation of LLNA: DA

- Reviewed available data and information regarding the usefulness and limitations to assess the ACD hazard potential of chemicals and products
- Determined validation status
 - Accuracy: sensitivity and specificity
 - Reproducibility for identifying LLNA sensitizers and nonsensitizers
 - Scope of substances tested
 - Availability of a standardized test method protocol
- Independent international scientific peer review panel

NICEATM-ICCVAM Evaluation of LLNA: DA – Validation Database - 1

- 46 total substances; 44 with comparative traditional LLNA data
- Intralaboratory data:
 - Individual animal data from Daicel Chemical Industries, Ltd. for 45 substances
 - Idehara et al. 2008¹: 31 substances
 - Idehara unpublished: 14 substances
- Interlaboratory data:
 - Individual animal data from a two-phased interlaboratory validation study for 14 substances²
 - One of the 14 substance not previously among the 45 substances from Daicel

¹Idehara et al. 2008. J Pharmacol Toxicol Methods. 58:1-10. ²Omori et al. 2008. J Pharmacol Toxicol Methods. 58:11-26.

NICEATM-ICCVAM Evaluation of LLNA: DA – Validation Database - 2

- Test Method Reference Substances (n = 44)
 - Includes 18/18 required (and 3/4 optional) LLNA performance standards reference substances

Tradit	Traditional LLNA Nonsensitizers (n = 12)		
Abietic acid 3-Aminophenol Benzalkonium chloride p-Benzoquinone Butyl glycidyl ether 5-Chloro-2-methyl-4- isothiazolin-3-one Cinnamic alcohol Cinnamic aldehyde Citral Cobalt chloride 2,4- Dinitrochlorobenzene	Diethyl maleate Ethyl acrylate Ethylene glycol dimethacrylate Eugenol Formaldehyde Glutaraldehyde Hexyl cinnamic aldehyde Hydroxycitronellal Imidazolidinyl urea Isoeugenol	2- Mercaptobenzothiazole Methyl methacrylate Nickel (II) sulfate hexahydrate Phenyl benzoate p-Phenylenediamine Phthalic anhydride Potassium dichromate Propyl gallate Resorcinol Sodium lauryl sulfate Trimellitic anhydride	1-Bromobutane Chlorobenzene Diethyl phthalate Dimethyl isophthalate Hexane Isopropanol Lactic acid Methyl salicylate Nickel (II) chloride Propylparaben Salicylic acid Sulfanilamide

Abbreviations: n – number of substances.

Bold type = LLNA performance standards reference substance. Benzocaine and toluene 2,4-diisocyanate have also been tested in the LLNA: DA but sufficient LLNA data for comparison were not available and are not included in the table.

ICCVAM

NICEATM-ICCVAM Evaluation of LLNA: DA – Test Method Accuracy - 1

	LLNA:	DA vs.	LLNA	(n = 44)
--	-------	--------	------	----------

SI Decision Criterion	n	Accuracy	Sensitivity	Specificity	False Positive Rate	False Negative Rate	Positive Predictivity	Negative Predictivity
≥3.0	44	91% (40/44)	88% (28/32)	100% (12/12)	0% (0/12)	13% (4/32)	100% (28/28)	75% (12/16)
≥2.5	44	91% (40/44)	88% (28/32)	100% (12/12)	0% (0/12)	13% (4/32)	100% (28/28)	75% (12/16)
≥2.0	44	91% (40/44)	97% (31/32)	75% (9/12)	25% (3/12)	3% (1/32)	91% (31/34)	90% (9/10)
≥1.8	44	93% (41/44)	100% (32/32)	75% (9/12)	25% (3/12)	0% (0/32)	91% (32/35)	100% (9/9)

Abbreviations: n = number of substances; SI = stimulation index

NICEATM-ICCVAM Evaluation of LLNA: DA -Test Method Accuracy - 2

NICEATM-ICCVAM Evaluation of LLNA: DA – Intralaboratory Reproducibility

- Individual animal data for two substances tested at varying concentrations, in three different experiments in one laboratory¹
 - Isoeugenol
 - Repeat positive results (SI ≥ 1.8) obtained for all three experiments
 - Eugenol
 - Repeat positive results (SI ≥ 1.8) obtained for all three experiments
 - Isoeugenol and eugenol are sensitizers in the LLNA

¹Idehara et al. 2008. J Pharmacol Toxicol Methods. 58:1-10.

NICEATM-ICCVAM Evaluation of LLNA: DA – Interlaboratory Reproducibility - 1

- Individual animal data from a two-phased interlaboratory validation study¹
 - First phase: 10 laboratories, 12 coded substances
 - 3 substances tested in all 10 laboratories
 - 9 substances randomly assigned to subsets of 3/10 laboratories
 - Each substance tested once in each laboratory at 3 doses
 - Second phase: 7 laboratories, 5 coded substances (2/5 substances unique to second phase)
 - 1 substance tested in all 7 laboratories
 - 4 substances randomly assigned to subsets of 4/7 laboratories
 - Each substance tested once in each laboratory at 3 doses

¹Omori et al. 2008. J Pharmacol Toxicol Methods. 58:11-26.

NICEATM-ICCVAM Evaluation of LLNA: DA – Interlaboratory Reproducibility - 2

- Individual animal data from a two-phased interlaboratory validation study¹ (continued)
 - Combined phases: 17 laboratories, 14 different coded substances
 - 10 LLNA sensitizers and 4 LLNA nonsensitizers
 - Concordant results for 11/14 substances among all the laboratories tested and same result as LLNA
 - Discordant results for 3/14 substances among some of the laboratories tested
 - One LLNA nonsensitizer tested positive in the LLNA: DA (SI ≥ 1.8) in 1/10 laboratories
 - Two LLNA sensitizers tested negative in the LLNA: DA (SI < 1.8) in 1 to 4 laboratories

¹Omori et al. 2008. J Pharmacol Toxicol Methods. 58:11-26.

ICCVAM Test Method Recommendations for LLNA: DA – Usefulness and Limitations

<u>Usefulness</u>

- Can be used to identify potential skin sensitizers or nonsensitizers
 - Use SI \geq 1.8 to identify potential sensitizers
 - Produced no false negatives, relative to traditional LLNA

Limitations

19

- Borderline weak positives (1.8 < SI < 2.5) have a slight potential to be false positives
 - If not consistent with predicted ACD hazard potential, consider all other available information
 - Nature of dose response
 - Evidence of systemic toxicity and/or excessive local skin irritation
 - Where appropriate, statistical significance
 - Structural relationship to known skin sensitizers
- Should consider if test material might be a potent ATP inhibitor or ATP degrading enzyme

LLNA: DA International Acceptance

- OECD TG 442A Skin Sensitization: Local Lymph Node Assay: DA
 - Adopted July 22, 2010
 - Available at <u>http://www.oecd-</u> <u>ilibrary.org/environment/test-no-442a-skin-</u> <u>sensitization_9789264090972-en</u>
 - Based on ICCVAM-recommended LLNA: DA protocol
 - Expected to result in broader use of LLNA tests, which will further reduce and refine animal use for ACD hazard assessments on a global basis, while ensuring human safety

Poster Available for Viewing

 See poster at this workshop (Room C1/C2):
ICCVAM Evaluation and International Acceptance of the Nonradioactive LLNA: DA Test Method
J Matheson¹, A Jacobs², P Brown², R Ward³, E Margosches³, E Salicru⁴, D Allen⁴, F Stack⁴, W Stokes⁵
¹U.S. CPSC, Bethesda, MD; ²U.S. FDA, Silver Spring, MD;
³U.S. EPA, Washington, DC; ⁴ILS, Inc., Contractor Supporting NICEATM, RTP, NC;
⁵NICEATM/NTP/NIEHS/NIH/DHHS, RTP, NC

Acknowledgements

 ICCVAM and NICEATM gratefully acknowledge the following individuals and institutions for submitting data to NICEATM for the LLNA: DA evaluation

Kenji Idehara, Ph.D.	Takashi Omori, Ph.D.
Daicel Chemical Industries, Ltd.	Kyoto University School of Public
Hyogo, Japan	Health
	Kyoto, Japan

Additional Acknowledgements

- ICCVAM
- ICCVAM Interagency Immunotoxicity Working Group
- ICCVAM Independent Scientific Peer Review Panel
- NICEATM Staff

ICCVAM