NICEATM

National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods

ICCVAM

Interagency Coordinating Committee on the Validation of Alternative Methods

New Models in the Validation Pipeline for Ocular Safety Testing

Jill Merrill, Ph.D. U.S. FDA

ICCVAM Best Practices Workshop

William H. Natcher Conference Center National Institutes of Health Bethesda, MD

January 19, 2011

Outline

- ECVAM Eye Irritation Validation Study (EIVS)
 - EpiOcular[™] test method
 - SkinEthic[™] test method
- Other non-animal ocular safety test methods and strategies
 - Fluorescein leakage test method
 - Antimicrobial Cleaning Product testing strategy pilot program
 - Isolated rabbit eye test method
- JaCVAM 2nd Validation Study
 - Short time exposure test method
 - To be presented by Dr. Hitoshi Sakaguchi

ECVAM Eye Irritation Validation Study (EIVS)

- Two *in vitro* test methods employing reconstructed human tissue (RhT) models
 - EpiOcular[™] eye irritation test (EIT)
 - 3D construct prepared from non-transformed, human-derived epidermal keratinocytes
 - SkinEthic[™] human corneal epithelium (HCE)
 - 3D construct uses immortalized human corneal epithelial cells
- Both test methods involve topical exposure of a test substance to the epithelial surface of the tissue construct, followed by cell viability measurement

ECVAM EIVS – Validation Management Team (VMT) Composition

- Validation Management Group
 - Stuart Freeman (Consultant) Chair
 - Valérie Zuang (ECVAM) Co-chair
 - Pauline McNamee (COLIPA) Sponsor representative
 - João Barroso (ECVAM) Sponsor representative
 - Jan Lammers (TNO) Coordinating organization representative
 - Carina de Jon-Rubingh (TNO) Biostatistician
 - André Kleensang (ECVAM) Biostatistician
 - Chantra Eskes (A.I.S.E.) External scientist
 - Thomas Cole (ECVAM) Chair of Chemicals Selection Group
- Lead laboratory representatives
 - Nathalie Alépée (L'Oréal) SkinEthic
 - Uwe Pfannenbecker (Beiersdorf) EpiOcular
- Liaisons
 - NICEATM William Stokes
 - ICCVAM Jill Merrill
 - JaCVAM Hajime Kojima
 - Health Canada Alison McLaughlin

ECVAM EIVS – Objective and Goal

- Objective:
 - Validate the EpiOcular[™] EIT and SkinEthic[™] HCE in vitro eye irritation test methods in a formal inter-laboratory study, in order to incorporate these test methods in a Bottom-Up/Top-Down tiered testing strategy (as defined in an ECVAM workshop held in 2005, Scott L. et al., 2009), as e.g. the initial step in a Bottom-Up approach. The ultimate purpose of the test strategy will be to replace the regulatory Draize eye irritation test according to Test Method B.5 of EC Regulation 440/2008 (EC, 2008a) or OECD TG 405 (OECD, 2002)
- Goal:
 - Assess the relevance (predictive capacity) and reliability (reproducibility within and between laboratories) of the EpiOcularTM EIT and SkinEthicTM HCE test methods with a challenging set of coded test chemicals (substances and mixtures) for which high quality in vivo data are available
 - More specifically, the EIVS will assess the usefulness and validity of the EpiOcularTM EIT and SkinEthicTM HCE as stand-alone test methods to identify chemicals not classified as eye irritant ("non-irritant" chemicals) and their reliable discrimination from all classes of eye irritant chemicals

ECVAM EIVS – Study Design

- 104 reference substances tested in at least 3 independent tests by each of 3 independent laboratories
- Chemical reactivity determined for all substances based on the Cysteine/Lysine Direct Peptide Reactivity Assay (DPRA)
 - As data from the DPRA analysis becomes available, subsets of 30-50 test substances will be distributed to the participating laboratories for viability assessment
- Two or more consecutive testing phases to allow for periodic opportunities to evaluate the frequency of technical errors and any other problems that might occur

Overview of the EpiOcular[™] Test Method¹ (1)

- 3-D tissue construct of normal human epidermal keratinocytes (NHEK)
 - Nonkeratinized, but stratified epithelium (5-8 cell layers) with an upper and central layer of squamous cells and a lower layer of rounded cells grown on a membrane in a specialized tissue culture insert with an air (apical) and liquid (basal) interface
 - Keratinocytes are normal, nontransformed, and nontransfected cells
 - Models the epithelial layer of the cornea, not the stroma or endothelium
 - Assumes *in vitro* cell viability correlates with a test substance's *in vivo* ocular irritation potential after corneal exposure
- Cell viability is measured by MTT reduction after topical exposure to the test substance

7

Overview of the EpiOcular[™] Test Method (2)

- Proposed decision criteria based on the viability of the treated tissues relative to the negative control-treated tissues
 - Nonirritant: If the test article-treated tissue viability is >60% relative to the negative control-treated tissue viability

EpiOcular[™] Test Method Schematic¹

NICEATM

Overview of the SkinEthic[™] Test Method (1)

- 3-D tissue construct of immortalized human corneal epithelial (HCE) cells
 - Cultured in a chemically defined medium and seeded on a polycarbonate membrane at the air–liquid interface
 - Multilayered epithelium resembling the *in vivo* corneal epithelium with a thickness close to 65 µm
- Substances are tested using 2 exposure times
 - Short exposure: 10 min exposure without post-treatment incubation
 - Long exposure: 60 min exposure followed by 16 h posttreatment incubation
- Cell viability is measured by MTT reduction after topical exposure to the test substance

Overview of the SkinEthic[™] Test Method (2)

- Proposed decision criteria based on the viability of the treated tissues relative to the negative control-treated tissues
 - Estimated time to reduce cell viability to 50% of the negative control (i.e., phosphate-buffered saline)
 - Nonirritant: Mean tissue viability >50%

SkinEthic[™] Test Method Schematic¹

Draft OECD Test Guidelines Currently Under Consideration

- Cytosensor Microphysiometer (CM) Test Method
 - For identifying limited types of ocular corrosives and severe irritants and substances not labeled as irritants
 - Consistent with ICCVAM-recommended CM protocol
- Fluorescein Leakage (FL) Test Method
 - For identifying ocular corrosives and severe irritants
 - False-positive rate: 7% (7/103) to 9% (9/99)
 - False-negative rate: 54% (15/28) to 56% (27/48)
 - Specifically for water-soluble substances and mixtures
 - Limitations include strong acids and bases, fixatives, and highly volatile chemicals because their mechanisms of action are not measured by FL
 - Other limitations: solids; colored and viscous substances

Overview of the Fluorescein Leakage Test Method

- Uses Madin-Darby Canine Kidney (MDCK) CB997 tubular epithelial cells that are grown on permeable inserts and model the non-proliferating state of the *in vivo* corneal epithelium
- Amount of sodium-fluorescein dye that leaks through the cell layer is measured spectrofluorometrically following a short (1 min) exposure to the test substance
- Endpoint concentration causing 20% fluorescein leakage relative to the value recorded for the untreated monolayer (0% leakage) and inserts without cells (100% leakage)
 - Expressed as FL₂₀ (mg/mL)
 - Proposed decision criteria based on the FL₂₀ value
 - Irritant: $FL_{20} \le 100 \text{ mg/mL}$

14

Fluorescein Leakage Test Method Schematic¹

¹Taken from: Wilkinson, PJ (2006)

The Isolated Rabbit Eye (IRE) Test Method

- Endpoints measured
 - Corneal opacity
 - Corneal swelling
 - Fluorescein penetration
 - Morphological effects on corneal epithelium
- Evaluated by ICCVAM/NICEATM in 2005 for identifying ocular corrosives and severe irritants
 - Recommended additional studies to expand the IRE database and optimize the IRE decision criteria
- Now undergoing further development and protocol optimization at Harlan Laboratories and GlaxoSmithKline
 - Use of IRE in combination with SkinEthic[™] to develop "intelligent test strategy" for ocular irritation (SOT 2009; abstract 376)
 - Work using a set of 30 diverse substances from the ICCVAM validation chemical database is underway (SOT 2010; abstract 102)

Overview of the Isolated Rabbit Eye Test Method

EPA Office of Pesticide Programs (OPP) Voluntary Pilot Program (initiated May 2009)

- Antimicrobial Cleaning Product Testing Strategy
 - Designed to evaluate the effectiveness of a specific alternative testing strategy, as a potential replacement for the rabbit eye test, for labeling antimicrobial products with cleaning claims
 - The proposed testing strategy uses three assays:
 - BCOP
 - CM
 - EpiOcular™
 - Intended to allow OPP to differentiate among the four eye irritation hazard categories used by the EPA
 - Along with the three alternative assays, OPP is asking participating registrants to submit available consumer incident data and any existing rabbit eye test results on similar or structurally-related chemicals or products as further support for the testing approach
 - To date, three submissions

AMCP Testing Strategy Proposal¹

¹Taken from the EPA Voluntary Pilot Program

ICCVAM

NICEATM

Summary

- EpiOcular[™] and SkinEthic[™] test methods currently undergoing prospective validation
 - Coordinated by ECVAM
- Fluorescein Leakage and Cytosensor
 Microphysiometer test methods currently under consideration as Draft OECD Test Guidelines
- Voluntary pilot program at EPA: Antimicrobial Cleaning Products testing strategy
- Isolated rabbit eye test method undergoing further development and optimization