New Models in the Validation Pipeline for Ocular Safety Testing

Jill Merrill, Ph.D.
U.S. FDA

ICCVAM Best Practices Workshop
William H. Natcher Conference Center
National Institutes of Health
Bethesda, MD

January 19, 2011
Outline

- **ECVAM Eye Irritation Validation Study (EIVS)**
 - EpiOcular™ test method
 - SkinEthic™ test method

- **Other non-animal ocular safety test methods and strategies**
 - Fluorescein leakage test method
 - Antimicrobial Cleaning Product testing strategy pilot program
 - Isolated rabbit eye test method

- **JaCVAM 2nd Validation Study**
 - Short time exposure test method
 - *To be presented by Dr. Hitoshi Sakaguchi*
ECVAM Eye Irritation Validation Study (EIVS)

- **Two in vitro test methods employing reconstructed human tissue (RhT) models**
 - EpiOcular™ eye irritation test (EIT)
 - 3D construct prepared from non-transformed, human-derived epidermal keratinocytes
 - SkinEthic™ human corneal epithelium (HCE)
 - 3D construct uses immortalized human corneal epithelial cells

- **Both test methods involve topical exposure of a test substance to the epithelial surface of the tissue construct, followed by cell viability measurement**
ECVAM EIVS – Validation Management Team (VMT) Composition

- Validation Management Group
 - Stuart Freeman (Consultant) – Chair
 - Valérie Zuang (ECVAM) – Co-chair
 - Pauline McNamee (COLIPA) – Sponsor representative
 - João Barroso (ECVAM) Sponsor representative
 - Jan Lammers (TNO) – Coordinating organization representative
 - Carina de Jon-Rubingh (TNO) – Biostatistician
 - André Kleensang (ECVAM) – Biostatistician
 - Chantra Eskes (A.I.S.E.) – External scientist
 - Thomas Cole (ECVAM) – Chair of Chemicals Selection Group

- Lead laboratory representatives
 - Nathalie Alépée (L’Oréal) – SkinEthic
 - Uwe Pfannenbecker (Beiersdorf) – EpiOcular

- Liaisons
 - NICEATM – William Stokes
 - ICCVAM – Jill Merrill
 - JaCVAM – Hajime Kojima
 - Health Canada – Alison McLaughlin
ECVAM EIVS – Objective and Goal

- **Objective:**
 - Validate the EpiOcular™ EIT and SkinEthic™ HCE in vitro eye irritation test methods in a formal inter-laboratory study, in order to incorporate these test methods in a Bottom-Up/Top-Down tiered testing strategy (as defined in an ECVAM workshop held in 2005, Scott L. et al., 2009), as e.g. the initial step in a Bottom-Up approach. The ultimate purpose of the test strategy will be to replace the regulatory Draize eye irritation test according to Test Method B.5 of EC Regulation 440/2008 (EC, 2008a) or OECD TG 405 (OECD, 2002).

- **Goal:**
 - Assess the relevance (predictive capacity) and reliability (reproducibility within and between laboratories) of the EpiOcular™ EIT and SkinEthic™ HCE test methods with a challenging set of coded test chemicals (substances and mixtures) for which high quality in vivo data are available.
 - More specifically, the EIVS will assess the usefulness and validity of the EpiOcular™ EIT and SkinEthic™ HCE as stand-alone test methods to identify chemicals not classified as eye irritant (“non-irritant” chemicals) and their reliable discrimination from all classes of eye irritant chemicals.
ECVAM EIVS – Study Design

- 104 reference substances tested in at least 3 independent tests by each of 3 independent laboratories

- Chemical reactivity determined for all substances based on the Cysteine/Lysine Direct Peptide Reactivity Assay (DPRA)
 - As data from the DPRA analysis becomes available, subsets of 30-50 test substances will be distributed to the participating laboratories for viability assessment

- Two or more consecutive testing phases to allow for periodic opportunities to evaluate the frequency of technical errors and any other problems that might occur
Overview of the EpiOcular™ Test Method¹ (1)

- 3-D tissue construct of normal human epidermal keratinocytes (NHEK)
 - Nonkeratinized, but stratified epithelium (5-8 cell layers) with an upper and central layer of squamous cells and a lower layer of rounded cells grown on a membrane in a specialized tissue culture insert with an air (apical) and liquid (basal) interface
 - Keratinocytes are normal, nontransformed, and nontransfected cells
 - Models the epithelial layer of the cornea, not the stroma or endothelium
 - Assumes in vitro cell viability correlates with a test substance’s in vivo ocular irritation potential after corneal exposure

- Cell viability is measured by MTT reduction after topical exposure to the test substance

¹ Tissue construct produced by MatTek Corporation, Ashland, MA
Overview of the EpiOcular™ Test Method (2)

- Proposed decision criteria based on the viability of the treated tissues relative to the negative control-treated tissues
 - Nonirritant: If the test article-treated tissue viability is >60% relative to the negative control-treated tissue viability
EpiOcular™ Test Method Schematic

1. Dose & Incubate
 - 1 min – 24 hr

2. MTT Addition
 - 3 hr

3. Reduction
 - 2 hr

4. Quantification

5. Extraction

1Provided by Rodger Curren IIVS, Inc.
Overview of the SkinEthic™ Test Method (1)

- 3-D tissue construct of immortalized human corneal epithelial (HCE) cells
 - Cultured in a chemically defined medium and seeded on a polycarbonate membrane at the air–liquid interface
 - Multilayered epithelium resembling the in vivo corneal epithelium with a thickness close to 65 μm

- Substances are tested using 2 exposure times
 - Short exposure: 10 min exposure without post-treatment incubation
 - Long exposure: 60 min exposure followed by 16 h post-treatment incubation

- Cell viability is measured by MTT reduction after topical exposure to the test substance
Overview of the SkinEthic™ Test Method (2)

- Proposed decision criteria based on the viability of the treated tissues relative to the negative control-treated tissues
 - Estimated time to reduce cell viability to 50% of the negative control (i.e., phosphate-buffered saline)
 - Nonirritant: Mean tissue viability >50%
SkinEthic™ Test Method Schematic

1Modified from http://www.skinethic.com/invitro.asp (SkinEthic Laboratories - Lyon, France)
Draft OECD Test Guidelines Currently Under Consideration

- **Cytosensor Microphysiometer (CM) Test Method**
 - For identifying limited types of ocular corrosives and severe irritants and substances not labeled as irritants
 - Consistent with ICCVAM-recommended CM protocol

- **Fluorescein Leakage (FL) Test Method**
 - For identifying ocular corrosives and severe irritants
 - False-positive rate: 7% (7/103) to 9% (9/99)
 - False-negative rate: 54% (15/28) to 56% (27/48)
 - Specifically for water-soluble substances and mixtures
 - Limitations include strong acids and bases, fixatives, and highly volatile chemicals because their mechanisms of action are not measured by FL
 - Other limitations: solids; colored and viscous substances
Overview of the Fluorescein Leakage Test Method

- Uses Madin-Darby Canine Kidney (MDCK) CB997 tubular epithelial cells that are grown on permeable inserts and model the non-proliferating state of the *in vivo* corneal epithelium

- Amount of sodium-fluorescein dye that leaks through the cell layer is measured spectrofluorometrically following a short (1 min) exposure to the test substance

- Endpoint - concentration causing 20% fluorescein leakage relative to the value recorded for the untreated monolayer (0% leakage) and inserts without cells (100% leakage)
 - Expressed as FL$_{20}$ (mg/mL)

- Proposed decision criteria based on the FL$_{20}$ value
 - Irritant: FL$_{20}$ ≤ 100 mg/mL
Fluorescein Leakage Test Method Schematic

1Taken from: Wilkinson, PJ (2006)
The Isolated Rabbit Eye (IRE) Test Method

- **Endpoints measured**
 - Corneal opacity
 - Corneal swelling
 - Fluorescein penetration
 - Morphological effects on corneal epithelium

- **Evaluated by ICCVAM/NICEATM in 2005 for identifying ocular corrosives and severe irritants**
 - Recommended additional studies to expand the IRE database and optimize the IRE decision criteria

- **Now undergoing further development and protocol optimization at Harlan Laboratories and GlaxoSmithKline**
 - Use of IRE in combination with SkinEthic™ to develop “intelligent test strategy” for ocular irritation (SOT 2009; abstract 376)
 - *Work using a set of 30 diverse substances from the ICCVAM validation chemical database is underway* (SOT 2010; abstract 102)
Overview of the Isolated Rabbit Eye Test Method

1. Each test and control eyes
2. Maintain in superfusion chamber at 32°C
3. Examine eyes prior to dosing
4. Exposure: 10 seconds
5. Dose: 0.1 ml or 100 mg
6. Multi-endpoint evaluation of effects
Antimicrobial Cleaning Product Testing Strategy

- Designed to evaluate the effectiveness of a specific alternative testing strategy, as a potential replacement for the rabbit eye test, for labeling antimicrobial products with cleaning claims.

- The proposed testing strategy uses three assays:
 - BCOP
 - CM
 - EpiOcular™

- Intended to allow OPP to differentiate among the four eye irritation hazard categories used by the EPA.

- Along with the three alternative assays, OPP is asking participating registrants to submit available consumer incident data and any existing rabbit eye test results on similar or structurally-related chemicals or products as further support for the testing approach.

- To date, three submissions.
AMCP Testing Strategy Proposal1

1Taken from the EPA Voluntary Pilot Program
Summary

- EpiOcular™ and SkinEthic™ test methods currently undergoing prospective validation
 - Coordinated by ECVAM

- Fluorescein Leakage and Cytosensor Microphysiometer test methods currently under consideration as Draft OECD Test Guidelines

- Voluntary pilot program at EPA: Antimicrobial Cleaning Products testing strategy

- Isolated rabbit eye test method undergoing further development and optimization