Review of Alternative Test Methods and Integrated Strategies for Ocular Safety Assessments

Jill Merrill, Ph.D.
U.S. FDA

ICCVAM Best Practices Workshop
William H. Natcher Conference Center
National Institutes of Health
Bethesda, MD

January 19, 2011
Outline

- Introduction

- Overview of ICCVAM evaluation, recommendations, and Agency responses for available alternative methods for ocular safety testing
 - Bovine Corneal Opacity and Permeability (BCOP) test method
 - Isolated Chicken Eye (ICE) test method
 - Cytosensor™ Microphysiometer (CM) test method
 - Routine use of analgesics, anesthetics, and humane endpoints in required \textit{in vivo} ocular safety testing

- Integrated decision strategies for ocular safety assessments
ICCVAM Evaluation and Recommendations for BCOP and ICE

- Submitted to ICCVAM in 2003 by U.S. EPA
- ICCVAM International Peer Review Panel Meeting (2005)
- Evaluated four alternative test methods for identifying severe irritants and corrosives
 - BCOP
 - HET-CAM
 - ICE
 - IRE
- ICCVAM test method evaluation report and recommendations published November 2006
 - Based on the validation database and performance, positive results in the BCOP and ICE test methods can be used to identify ocular corrosives and severe irritants without the need for animal testing
Regulatory Acceptance of BCOP and ICE

- ICCVAM recommendations accepted by U.S. Federal regulatory agencies in 2008
- OECD TGs adopted 2009
 - OECD TG 437 (BCOP)
 - OECD TG 438 (ICE)
- International Organization for Standardization (ISO) Inclusion
 - ISO 10993-10:2010 Biological evaluation of medical devices – Part 10: Tests for irritation and skin sensitization
ICCVAM Peer Review Panel Meeting (2009)

- International Public Peer Review Panel Meeting
 - 22 experts from 6 countries
 - Considered draft background review documents and draft ICCVAM recommendations

- Evaluated 10 alternative test methods and strategies, including
 - CM
 - Routine use of systemic analgesics, topical anesthetics, and humane endpoints

NICEATM-ICCVAM: Advancing Public Health and Animal Welfare
ICCVAM Evaluation and Recommendations: CM

- ICCVAM test method evaluation report and recommendations published September 2010
 - Based on the validation database and performance, positive results in the CM can be used for substances within a defined limited applicability domain to identify ocular corrosives and severe irritants without the need for animal testing
 - Negative results in the CM can also be used for substances within an even more restricted applicability domain to identify substances not labeled as irritants without the need for animal testing

- Federal agency responses due to ICCVAM March 7, 2011
 - Many available now

ICCVAM Evaluation and Recommendations: Topical Anesthetics, Systemic Analgesics, and Humane Endpoints

- ICCVAM test method evaluation report and recommendations published September 2010
 - A balanced preemptive pain management plan should always be used when the rabbit eye test is conducted for regulatory safety testing
 - Additional humane endpoints that should be used to end studies earlier

- Federal agency responses due to ICCVAM March 7, 2011
 - Many available now

Summary of ICCVAM Evaluations

- BCOP and ICE are now available for use internationally with the adoption of OECD TGs 437 (BCOP) and 438 (ICE) and reference to their availability and use in ISO 10993-10
- The CM, pending U.S. agency acceptance, will be the first *in vitro* test method that can be used, with specified limitations, to identify substances not labeled as irritants
- Appropriate use of the ICCVAM-recommended BCOP, ICE, and CM protocols are expected to support both continued protection of public health and improved animal welfare
- Use of these tests in a tiered testing strategy should refine and reduce use of the rabbit eye test
 - Where applicable for identification of corrosives and severe irritants and/or substances not labeled as irritants
- Use of anesthetics, analgesics, and humane endpoints in the rabbit eye test, pending U.S. agency acceptance, will further refine the use of the rabbit eye test
Integrated Sequential Testing Strategy for Potential Ocular Hazards\(^1\) (1)

1. Evaluate existing human and/or animal data on eyes and skin
 - If show effects on eyes or corrosive/severe irritant effects on skin, assume corrosive or irritating to eyes – no testing is needed
 - OR: If no information available or available information is not conclusive, go to step 2

2. Perform structure activity relationships (SAR)
 - If predict effects on eyes or skin corrosivity, assume corrosive or irritating to eyes – no testing is needed
 - OR: If no predictions can be made or predictions are not conclusive or negative, go to step 3

3. Measure pH (buffering capacity, if relevant)
 - If pH \(\leq 2.0\) or \(\geq 11.5\) with high buffering capacity, assume corrosivity to eyes – no testing is needed
 - OR: If 2\(<\)pH\(<\)11.5 or pH \(\leq 2.0\) or \(\geq 11.5\) with low/no buffering capacity, go to step 4

4. Evaluate systemic toxicity via the dermal route
 - If highly toxic at concentrations that would be tested in the eye, substance too toxic for testing – no testing is needed
 - OR: If such information is not available or substance is not highly toxic, go to step 5

\(^1\) Modified from TG 405 (OECD 2002)
Integrated Sequential Testing Strategy for Potential Ocular Hazards¹ (2)

5. Perform validated and accepted \textit{in vitro} or \textit{ex vivo} test for eye corrosion
 - If corrosive response, assume corrosivity to eyes – no further testing is needed
 - **OR**: If substance is not corrosive or a validated and accepted \textit{in vitro} or \textit{ex vivo} test for eye corrosion is not yet available, go to step 6

6. Perform validated and accepted \textit{in vitro} or \textit{ex vivo} test for eye irritation
 - If irritant response, assume irritancy to eyes – no further testing is needed
 - **OR**: If substance is not an irritant or a validated and accepted \textit{in vitro} or \textit{ex vivo} test for eye irritation is not yet available, go to step 7

7. Experimentally assess \textit{in vivo} skin irritation/corrosion potential (TG 404)
 - If corrosive or severe irritant response, assume corrosivity to eyes – no further testing is needed
 - **OR**: If substance is not corrosive or severely irritating to skin, go to step 8

8. Perform initial \textit{in vivo} rabbit eye test using one animal
 - If severe damage to eyes, consider corrosive to eyes – no further testing is needed
 - **OR**: If no severe damage or no response, go to step 9

¹ Modified from TG 405 (OECD 2002)
Integrated Sequential Testing Strategy for Potential Ocular Hazards¹ (3)

9. Perform confirmatory test using one or two additional animals
 - If corrosive or irritating, consider corrosive or irritating to eyes – no further testing is needed
 - OR: If not corrosive or irritating, consider non-irritating and non-corrosive to eyes – no further testing is needed

¹ Modified from TG 405 (OECD 2002)
Use of Alternative Methods in Integrated Strategies for Ocular Safety Assessments

- Some alternative methods may have a range of responses that are associated with an unacceptable level of uncertainty and that cannot, therefore, be used alone for hazard decisions.

- Additional information or data could be used to reduce the uncertainty associated with these results using an integrated strategy to reach a hazard decision.

- Integrated strategies using multiple sources of data and information can increase the certainty of hazard decisions beyond the certainty associated with only a single source of data or information.

- Important to include test methods that incorporate key pathway events in eye irritation/corrosion.

Integrated Strategies: Consideration of Key Pathway Events in Eye Irritation/Corrosion

- **Damage to corneal structures resulting in:**
 - Opacity
 - Swelling (chemosis)
 - Cell death with apoptosis and/or necrosis
 - Ulceration
 - Scarring

- **Inflammation**
 - Release of inflammatory mediators
 - Release of pain mediators
 - Cell proliferation and migration
 - Stromal collagen reorganization

- **Depth of Injury**
 - Epithelium - 1
 - Bowman’s layer - 2
 - Stroma - 3
 - Descemet’s membrane - 4
 - Endothelium - 5
Integrated Strategies for Ocular Safety Assessments: Summary

- BCOP and ICE can be used in a tiered testing strategy, with specified limitations and applicability, to screen and identify ocular corrosives and severe irritants that otherwise would be tested in the rabbit eye test, thereby contributing to reduced animal use.

- CM can be used in a tiered testing strategy, with specified limitations and applicability, to screen and identify substances not labeled as irritants and/or ocular corrosives and severe irritants.

- New methods in the validation pipeline will further improve integrated strategies and are expected to increasingly replace the use of animals for ocular safety testing:
 - EpiOcular™ and SkinEthic™ test methods - ECVAM Eye Irritation Validation Study
 - Fluorescein leakage test method
 - Antimicrobial Cleaning Product testing strategy pilot program
 - Isolated rabbit eye test method
 - Short time exposure test method - JaCVAM Validation Study
 - More on these methods later today
Eye Injury Regulatory Safety Testing Workshop: Goals

- Review available methods: applications, strengths, and weaknesses
- Provide procedures for conducting and interpreting data in accordance with regulatory testing requirements and guidelines
- Become familiar with data generated by each test method
- Share information on the appropriate use of results in regulatory safety testing
- Discuss challenges
- Identify and discuss new methods
- Solicit high quality data for validating new methods
Acknowledgement: ICCVAM Ocular Peer Review Panel (2009)

- Wallace Hayes, Ph.D. (Panel Chair)
 Harvard School of Public Health
 Andover, MA
- Hongshik Ahn, Ph.D.
 Stony Brook University
 Stony Brook, NY
- Paul Bailey, Ph.D. (Group Chair)
 Bailey & Associates Consulting
 Neshanic Station, NJ
- Richard Dubielzig, D.V.M.
 School of Veterinary Medicine,
 University of Wisconsin, Madison,
 WI
- Henry Edelhauser, Ph.D.¹
 Emory University
 Atlanta, GA
- Mark Evans, D.V.M., Ph.D.
 Pfizer Global Research and
 Development
 San Diego, CA
- James Jester, Ph.D.
 University of California-Irvine
 Orange, CA
- Tadashi Kosaka, D.V.M., Ph.D.
 The Institute of Toxicology
 Ibaraki, Japan
- Alison McLaughlin, MSc
 Health Canada
 Ontario, Canada
- Judy Lynn Palmer, Ph.D.
 University of Texas-MD Anderson
 Cancer Center
 Houston, TX
- Robert Peiffer, D.V.M., Ph.D.
 Merck Research Laboratories
 Doylestown, PA
- Denise Rodeheaver, Ph.D.
 Alcon Research Ltd.
 Forth Worth, TX
- Donald Sawyer, D.V.M., Ph.D.
 (Group Chair)
 Retired, Michigan State University
 Okemos, MI
- Kirk Tarlo, Ph.D. (Group Chair)
 Amgen, Inc.
 Thousand Oaks, CA
- Daniel Wilson, Ph.D. (Group Chair)
 Dow Chemical Co.
 Midland, MI
- Fu-Shin Yu, Ph.D.
 Wayne State University
 Detroit, MI
- Jan van der Valk, Ph.D.
 Utrecht University
 Utrecht, Netherlands
- Philippe Vanparys, Ph.D.
 Cardam Center for Advanced
 Research and Development
 Mol, Belgium
- Maria Pilar Vinardell, Ph.D.
 Universitat de Barcelona
 Barcelona, Spain
- Sherry Ward, Ph.D., MBA
 Consultant - International
 Foundation for Ethical Research
 New Market, MD
- Wallace Hayes, Ph.D. (Panel Chair)
 Harvard School of Public Health
 Andover, MA
- Hongshik Ahn, Ph.D.
 Stony Brook University
 Stony Brook, NY
- Paul Bailey, Ph.D. (Group Chair)
 Bailey & Associates Consulting
 Neshanic Station, NJ
- Richard Dubielzig, D.V.M.
 School of Veterinary Medicine,
 University of Wisconsin, Madison,
 WI
- Henry Edelhauser, Ph.D.¹
 Emory University
 Atlanta, GA
- Mark Evans, D.V.M., Ph.D.
 Pfizer Global Research and
 Development
 San Diego, CA
- James Jester, Ph.D.
 University of California-Irvine
 Orange, CA
- Tadashi Kosaka, D.V.M., Ph.D.
 The Institute of Toxicology
 Ibaraki, Japan
- Alison McLaughlin, MSc
 Health Canada
 Ontario, Canada
- Judy Lynn Palmer, Ph.D.
 University of Texas-MD Anderson
 Cancer Center
 Houston, TX
- Robert Peiffer, D.V.M., Ph.D.
 Merck Research Laboratories
 Doylestown, PA
- Denise Rodeheaver, Ph.D.
 Alcon Research Ltd.
 Forth Worth, TX
- Donald Sawyer, D.V.M., Ph.D.
 (Group Chair)
 Retired, Michigan State University
 Okemos, MI
- Kirk Tarlo, Ph.D. (Group Chair)
 Amgen, Inc.
 Thousand Oaks, CA
- Daniel Wilson, Ph.D. (Group Chair)
 Dow Chemical Co.
 Midland, MI
- Fu-Shin Yu, Ph.D.
 Wayne State University
 Detroit, MI

¹ Could not attend the Panel meeting, but agreed to participate in the review of all materials
Additional Acknowledgements

- ICCVAM
- ICCVAM Interagency Ocular Toxicity Working Group
- ICCVAM Independent Scientific Peer Review Panel (2005)
- NICEATM Staff