NICEATM

National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods

ICCVAM

Interagency Coordinating Committee on the Validation of Alternative Methods

The Cytosensor Microphysiometer (CM) Test Method – Validation Status and Appropriate Use

> Elizabeth Lipscomb, Ph.D., ILS-Inc., Contractor Supporting NICEATM

ICCVAM Workshop Series on Best Practices for Regulatory Safety Testing: Assessing the Potential for Chemically Induced Eye Injuries

January 19, 2011

William H. Natcher Conference Center National Institutes of Health Bethesda, MD

NICEATM-ICCVAM Evaluation of CM

- Reviewed available data and information regarding the usefulness and limitations for assessing the ocular hazard potential of chemicals and products
- Determined validation status
 - Accuracy: sensitivity and specificity
 - Reproducibility for identifying ocular corrosives/severe irritants vs. all other hazard categories
 - Scope of substances tested
 - Availability of a standardized test method protocol
 - Independent international scientific peer review panel

Overview of CM

L929 mouse fibroblast cells are treated with the test substance

- Seven concentrations (predetermined in the dose rangefinding assay)
- Diluted in low-buffered treatment medium
- At least two independent runs
- L929 cells are treated with the positive control in each run
 - 10% (w/v) sodium lauryl sulfate (SLS)
- Time of exposure: 13 minutes 30 seconds
- Endpoint measured: Rate of pH change

Validation Database

- 53 water-soluble surfactants (32 surfactant-containing formulations and 21 surfactant substances tested across seven different laboratories)
 - Most of the 32 formulations, which are limited to cosmetic and personal care products, contain one or more surfactants at a final concentration of greater than five percent
 - No pesticide formulations included
- 29 water-soluble nonsurfactants (27 nonsurfactant chemicals and 2 nonsurfactant formulations tested in seven laboratories)
 - For example, acids, alcohols, alkalis, and ketones
- Reproducibility data from two validation studies
 - Balls et al. (1995): 4 laboratories
 - Brantom et al. (1997): 2 laboratories

Decision Criteria Proposed to Classify CM Data

MRD ₅₀ (mg/mL) ¹	EPA	GHS		
>80	Category IV	NA		
>2; ≤80	No prediction can be made	NA		
>10	NA	No Category		
>2; ≤10	NA	No prediction can be made		
≤2	Category I	Category 1		

¹MRD₅₀: Metabolic rate decrement of 50%. The concentration of test substance (weight/volume) required to cause 50% inhibition of the basal acidification (metabolic) rate.

CM Test Method Accuracy: Ocular Corrosives and Severe Irritants¹: Surfactant-Containing Substances

	Accuracy No.		Sensitivity		Specificity		False Positive Rate ²		False Negative Rate ³		
		%	No.	%	No.	%	No.	%	No.	%	No.
EPA	52	85	44/52	78	18/23	90	26/29	10	3/29	22	5/23
GHS	53	94	50/53	91	21/23	97	29/30	3	1/30	9	2/23

¹EPA = Cat I vs. Cat II/III/IV, GHS = Cat 1 vs. Cat2A/2B/NC

²The three false positives when using the EPA classification system are classified as Category II (n=2) or III (n=1) based on *in vivo* data. The one false positive when using the GHS classification system is Not Classified based on *in vivo* data. ³The false negative substances were classified as mild or moderate irritants *in vitro* based on the EPA and GHS classification systems (i.e., EPA Category II/III; GHS Category 2A /2B).

CM Test Method Accuracy: Ocular Corrosives and Severe Irritants¹: Nonsurfactant Substances

	No.	Αςςι	uracy	Sens	itivity	Spec	ificity	False F Ra	Positive ate	False N Ra	egative te ²
		%	No.	%	No.	%	No.	%	No.	%	No.
EPA	25	92	23/25	71	5/7	100	18/18	0	0/18	29	2/7
GHS	29	83	24/29	55	6/11	100	18/18	0	0/18	45	5/11

¹EPA = Cat I vs. Cat II/III/IV, GHS = Cat 1 vs. Cat2A/2B/NC

² Two substances were false negatives when using the EPA classification system and were classified *in vitro* as either Category II/III (n = 1) or IV (n = 1). Five substances were false negatives using the GHS classification system and were classified *in vitro* as either Category 2A/2B (n = 4) or Not Classified (n = 1).

CM Test Method Accuracy: Substances Not Labeled as Irritants¹: Surfactant-Containing Substances

	No.	Accuracy No.		Sensitivity		Specificity		False Positive Rate ²		False Negative Rate ³	
		%	No.	%	No.	%	No.	%	No.	%	No.
EPA	52	92	48/52	98	45/46	50	3/6	50	3/6	2	1/46
GHS	53	68	36/53	100	28/28	32	8/25	68	17/25	0	0/28

¹EPA = Cat IV vs. Cat I/II/III; GHS = NC vs. Cat 1/2A/2B

²Three substances were false positive when using the EPA classification system and were classified *in vitro* as Category II/III. Seventeen substances were false positive when using the GHS classification system and were classified *in vitro* as Category 2A/2B (n=16) or Category 1 (n=1).

³ The one false negative was EPA Category III based on *in vivo* data. For this substance, six test animals were included in the *in vivo* test. One test animal had no observable effects, three test animals had conjunctival redness (score = 1), and two test animals had corneal opacity (score = 1) that cleared after one day.

CM Test Method Accuracy: Substances Not Labeled as Irritants¹: Nonsurfactant Substances

	No.	Accuracy No.		Sensitivity		Specificity		False Positive Rate		False Negative Rate ²	
		%	No.	%	No.	%	No.	%	No.	%	No.
EPA	29	66	19/29	67	16/24	60	3/5	40	2/5	33	8/24
GHS	25	64	16/25	62	13/21	75	3/4	25	1/4	38	8/21

¹EPA = Cat IV vs. Cat I/II/III; GHS = NC vs. Cat 1/2A/2B

²Eight substances were false negative when using the EPA and GHS classification systems. In the EPA system, they were classified *in vivo* as Category 1 (n = 1) and Category II (n = 3) and Category III (n = 4). In the GHS system, they were classified *in vivo* as Category 1 (n = 1) and Category 2A (n = 7).

CM Interlaboratory Reproducibility

Material Type	Number of Laboratories	Agreement Among Laboratories	Percentage (# correct/total)	Maximum Mean CV	Study		
		100%	55% (6/11)				
Surfactants		75%	27% (3/11)	37%			
		50%	18% (2/11)		FC/HO –		
	4	100%	48% (11/23)		Balls et al. (1995)		
		75%	22% (5/23)	E40 /			
Nonsurractants		67%	4% (1/23)	51%			
		50%	13% (3/23)				
Curto stanto		100%	90% (9/10)	220/			
Sunaciants		0%	10% (1/10)	23%			
Surfactant- based formulations and mixtures	2	100%	100% (7/7)	16%	COLIPA – Brantom et al. (1997)		
		100%	78% (7/9)	E10/			
nonsurraciants		0%	22% (2/9)	0/10			

ICCVAM Recommendations for CM¹: Usefulness and Limitations – Ocular Corrosives and Severe Irritants

<u>Usefulness</u>

Can be used for identification of ocular corrosives and severe irritants (EPA Category I, GHS Category 1) in appropriate circumstances and with certain limitations

Limitations

 Limited to water-soluble substances (i.e., water-soluble surfactants, surfactant-containing formulations, and nonsurfactants)

¹ ICCVAM. 2010. Test Method Evaluation Report. NIH publication No. 10-7553A. Available: <u>http://iccvam.niehs.nih.gov/methods/ocutox/MildMod-TMER.htm</u>

ICCVAM Recommendations for CM¹: Usefulness and Limitations – Substances Not Labeled as Irritants

<u>Usefulness</u>

 Can be used for identification of substances not labeled as irritants (EPA Category IV) in appropriate circumstances and with certain limitations

Limitations

Restricted to water-soluble surfactant chemicals and certain types of surfactant-containing formulations (e.g., cosmetics and personal care product formulations, but not pesticide formulations), but **not** nonsurfactants

¹ ICCVAM. 2010. Test Method Evaluation Report. NIH publication No. 10-7553A. Available: <u>http://iccvam.niehs.nih.gov/methods/ocutox/MildMod-TMER.htm</u>

ICCVAM-Recommended CM Protocol¹

NICEATM-ICCVAM - Advancing Public Health and Animal Welfare

NICEATM

ICCVAM Recommendations: Future Studies

- Additional studies to expand the applicability domain of CM for ocular corrosives and severe irritants and for substances not labeled as irritants
 - Use ICCVAM-recommended reference substances¹ or a reference set from this list
- Optimization studies to increase performance of CM for identifying all categories of ocular irritancy hazard classification
- ICCVAM encourages users to provide all data from future studies to further evaluate the usefulness and limitations of CM

¹ Available at http://iccvam.niehs.nih.gov/methods/ocutox/ivocutox/ocu_tmer.htm

Draft OECD Test Guideline Currently Under Consideration

- Draft OECD Guideline for the Testing of Chemicals The Cytosensor Microphysiometer Test Method: An In Vitro Method for Identifying Chemicals Not Classified as Irritant, as well as Ocular Corrosive and Severe Irritant Chemicals
 - Based on international validation study by ECVAM, in collaboration with ICCVAM and JaCVAM

¹Available at http://www.oecd.org/document/55/0,3343,en_2649_34377_2349687_1_1_1_1,00.html

ICCVAM

2010 ICCVAM Evaluation of CM

- In 2010, ICCVAM also evaluated CM for identifying nonsevere irritants
- ICCVAM concluded that CM is **not** recommended to identify moderate and mild ocular irritants as defined by the EPA and GHS classification systems

Acknowledgements

- ICCVAM and NICEATM gratefully acknowledge ECVAM for providing a redacted version of the CM BRD for public availability, which was based on the submission to ECVAM by the Institute for In Vitro Sciences, Inc.
 - Rodger Curren, Ph.D.
 - Angela Sizemore
 - Jennifer Nash
 - Greg Mun
 - Amanda Ulrey
 - John Harbell, Ph.D. (until March 2006)

Additional Acknowledgements

- ICCVAM
- ICCVAM Interagency Ocular Toxicity Working Group
- ICCVAM Independent Scientific Peer Review Panel
- NICEATM Staff