

In Vitro – In Vivo Extrapolation for High-Throughput Prioritization and Decision-Making

Setting the Stage

Barbara A. Wetmore The Hamner Institutes for Health Sciences Research Triangle Park, NC USA 27709 bwetmore@thehamner.org

In Vitro-to-*In Vivo* Extrapolation for High-Throughput Prioritization and Decision-Making

- Webinars: First Wednesdays, 11:00AM E.D.T.
 - October 7 Barbara Wetmore: Setting the Stage
 - November 4 John Wambaugh: Model Development
 - December 2 Lisa Sweeney: Model Evaluation
 - January 6, 2016 TBD: State of the Science
- In-person Meeting: February 17-18, 2016
 - US EPA, Research Triangle Park, NC

Broad-Based Movement in Toxicology Towards In Vitro Testing and Hazard Prediction

<u>High-Throughput Toxicity Testing Data</u> Difficulty Translating Nominal Testing Concentrations into *In Vivo* Doses

In Vitro - In Vivo Extrapolation

<u>Definition:</u> Utilization of *in vitro* experimental data to predict phenomena *in vivo*

 IVIVE-<u>PK/TK (Pharmacokinetics/Toxicokinetics)</u>: Fate of molecules/chemicals in body

Considers ADME; uses PK / PBPK modeling

- IVIVE-<u>PD/TD (Pharmacodynamics/Toxicodynamics)</u>: Effect of molecules/chemicals at biological target *in vivo*
 - Assay design/selection important; perturbation as adverse/therapeutic effect, reversible/ irreversible
- Both contribute to predict *in vivo* effects

– IVIVE to Predict Pharmacokinetics – Prioritization and Hazard Prediction Based on Nominal Concentrations Can Misrepresent Potential Health Risks

-- IVIVE in a HT Environment --Modeling *In Vivo* Pharmacokinetics Using *In Vitro* Assays

-- IVIVE in a HT Environment --Modeling *In Vivo* Pharmacokinetics Using *In Vitro* Assays

 $V_L \approx 1820 \ g$

Integrating Human Dosimetry and Exposure with the ToxCast *In Vitro* Assays

Rotroff *et al., Tox Sci.*, 2010 Wetmore *et al., Tox Sci.*, 2012

IVIVE Webinar | October 7, 2015

Integrating Human Dosimetry and Exposure with the ToxCast *In Vitro* Assays

Rotroff *et al., Tox Sci.*, 2010 Wetmore *et al., Tox Sci.*, 2012

Pharmacokinetic Data Across 440 Chemicals Provides Insights into Distributions Across Tested Space

How good are we at predicting in vivo C_{ss} ?

ToxCast Phase I Chemicals

ToxCast Phase II Chemicals

Chemical	<i>In vivo-</i> Derived C _{ss} (µM)	<i>IVIVE</i> C _{ss} ^{a,b} (µM)	<i>IVIVE</i> Caco-2 ^c C _{ss} ^{a,b} μM)	Chemical	In vivo- Derived C _{ss} (µM)	<i>IVIVE</i> C _{ss} ^{a,b} (µM)	<i>IVIVE</i> Caco-2 ^c C _{ss} ^{a,b} μM)
2,4-D	9.05-90.05	39.25	40.43	Acetaminophen	1.1	0.52	0.57
Bisphenol-A	< 0.13 ^d	0.09	0.09	2-Chloro-2'-deoxyadenosine	0.28	1.36	0.58 15.40
Cacodylic acid	1.80	3.06	e	Coumarin	0.01-0.02	13.63	
Carbaryl	0.03	0.01	0.01	Diphenhydramine HCl	0.11-0.16	3.18	3.57
Fenitrothion	0.03	2.28	2.28	6-Propyl-2-thiouracil	1.10	1.58	1.80
Lindane	0.46	1.27	1.29	Chlorpyrifos	0.022	0.24	0.27
Oxytetracycline				Sulfasalazine	0.2-1.8	11.6	2.5
dihydrate	0.36	2.00	0.44	Candoxatril	0.023	0.18	0.14
Parathion	0.17	2.48	2.56	Flutamide	0.004-0.005	0.57	0.64
PFOS	19,990 ^f	153.23 ^f	171.51 ^f	PK 11195	0.14	0.58	0.66
PFOA	20,120 ^f	13.25 ^f	15.92 ^f	5,5'-Diphenylhydrantoin	4.92	1.59	1.59
Picloram	0.27	57.19	32.01	Triamcinolone	0.05-0.29	0.004	0.002
Thiabendazole	0.45	13.76	15.20	Volinanserin	0.037	0.03	0.03
Triclosan	2-10	0.07	0.07	Zamifenacin	2.86	0.57	0.64

How good are we at predicting in vivo C_{ss} ?

Reasons for C_{ss} **Overprediction** - **Opportunities for Refinement** -

- Not all routes of metabolic clearance are captured
 - Extrahepatic (intestinal, renal, etc.) metabolism
 - Nonhepatocyte-mediated clearance
- Hepatocyte suspensions unable to detect clearance of low turnover compounds
- Absorption / Bioavailability assumed 100%
- Restrictive vs. Nonrestrictive clearance
- Conservative assumptions drive poor predictivity for chemicals known to be rapidly cleared in vivo

Toxicokinetic Triage for Environmental Chemicals

FIG. 5. A neuroise partitioning regression use was used to classify the discreption of between the C_{cc} predicted from as used that and the as use C_{cc} (Deach and , 2008; Wetmore and , 2012). Each "leaf" of the use shows a group of chemicals for which HTT either oversitinates C_{cc} (making conservative predictions) or underestimates C_{cc} . For all build groups, the predictions are on the order of the observed C_{cc} (approximately within a factor of 3.2 × greater or baser). For the other 3 groups, the C_{cc} is S_{cc} , D_{cc} , and 20% oversitizated. The dashed line indicates the identity (perfect predictor) line.

Wambaugh et al., Tox Sci., 2015

Comparing Dosimetry-Adjusted Oral Equivalents against Nominal AC₅₀ Concentrations

CAS # 4291-63-8 1806-26-4 57-97-6 148-24-3 484-17-3 484-17-3 484-17-3 120-12-7 1912-24-9 55285-14-8 7173-51-5 76-87-9 99-76-3 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7 50-65-7	Chemical 2-Chloro-2'-deoxyadenosine 4-Octylphenol 7,12-Dimethylbenz(a)anthracene 8-Hydroxyquinoline 9-Phenanthrol 9-Phenanthrol 9-Phenanthrol 9-Phenanthrol 4nthracene Anthracene Atrazine Carbosulfan Didecyl dimethyl ammonium chloride Fentin hydroxide Hothylparaben Niclosamide Niclosamide Niclosamide Octhilinone Progesterone Rotenone Simvastatin	Upper 95 th %ile Css (μM) 2.0713 1.4109 3.9083 0.0403 2.1423 2.1423 2.1423 2.1423 0.5800 0.5998 0.0056 3.3686 318.0339 0.1768 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073 0.3073	Assay Name (abridged) BSK_SAg_PBMCCytotoxicity APR_CellCycleArrest APR_DEllCycleArrest APR_p53Act APR_p53Act APR_MitoMass APR_MitoTcArrest APR_MitoTcArrest APR_MitoMembPot APR_p53Act NVS_ENZ_rAChE APR_CellLoss APR_CellLoss APR_CellLoss APR_CellCycleArrest APR_MitoMass APR_NuclearSize APR_OxidativeStress APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoticArrest APR_MitoMass	AC50 (μM) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Oral Equivalent (mg/kg/day) 0.4828 0.7088 0.2559 24.8188 0.4668 0.4668 0.4668 1.7241 1.6672 177.2814 0.2969 0.0031 5.6561 3.2544 3.2544 3.2544 3.2544 1.4569 4.9835 3.1941 1.5677 1.5677	Same AC ₅₀ 550-fold lower Oral Equivalent
79902-63-9	Simvastatin	0.6379 0.6379 < 168.1532	APR CellCycleArrest	1	1.5677	

Incorporating Dosimetry-Adjusted ToxCast Bioactivity Data with HT ExpoCast Predictions

Wetmore et al., Tox. Sci, 2015

Providing an MOE Context to Data

...

. . . .

Chemical	Description/Use	No. Assay Hits where <u>MHE^a</u> <u>AER^b<100</u>	AC ₅₀ (μΜ) ^c	Oral <u>Equivalent</u> (mg/kg/day)	Exposure Total (MHE)	AER (MHE AER)
Tannic acid	Plant polyphenol; food, drug uses; mordant during dyeing process	5	0.0002	5.83E-04	1.35E-02 (3.36E-02)	0.043 (0.02)
Triphenyl phosphate	Plasticizer; fire retardant	3	0.0006	7.66E-04	6.57E-03 (1.41E-02)	0.117 (0.054)
Heptadecafluorooctanesulfonic acid potassium salt	Organofluorine	12	0.013	5.99E-05	3.21E-04 (8.72E-04)	0.187 (0.069)
Mirex	Banned organochlorine insecticide	3	0.01144	1.61E-04	1.55E-04 (3.13E-04)	1.040 (0.516)
Ammonium perfluorooctanoate	Organofluorine	9	0.20182	7.48E-04	3.24E-04 (1.09E-03)	2.310 (0.684)
Tributyl phosphate	Solvent; plasticizer	3	1.28	2.04E-02	4.03E-03 (6.60E-03)	5.05 (3.09)
Potassium perfluorohexanesulfonate	Organofluorine	2	0.0825	3.09E-04	3.09E-05 (7.27E-05)	10.02 (4.26)
Dioctyl phthalate	plasticizer	6	4.88	7.62E-02	7.49E-03 (1.34E-02)	10.18 (5.68)
Diethylstilbesterol	Nonsteroidal estrogen	6	0.000074	1.61E-04	1.49E-05 (2.84E-05)	10.82 (5.68)
Diphenhydramine	Antihistamine drug	2	0.0238	4.91E-03	1.95E-04	25.21

Comparing In Vitro ToxCast-derived Points of Departure Against In Vivo Rodent LELs

Comparing In Vitro ToxCast-derived Points of Departure Against In Vivo Rodent LELs

Minimum In Vitro Rat Oral Equivalent Dose (mg/kg/day)

Wetmore et al., Tox Sci., 2013

The Most Sensitive *In Vitro* Assay Provides a Conservative Estimate of the Point-of-Departure

Wetmore et al., Tox Sci., 2013

High-Throughput Risk Assessment

Transitioning from Potent Hits to Pathway Activating Doses

Judson et al., 2011

Gaps and Limitations of IVIVE Approach to Predict Chemical PK/TK

- Metabolism not considered
 - Transition to metabolically competent systems will require different approach
 - Bioactivating vs. detoxifying metabolism; predictive tools?
- Lack of in vivo PK data to validate IVIVE for environmental chemicals
- Lack of appropriate training sets to validate in silico predictions
 - plasma protein binding, intrinsic clearance, metabolism
- Tissue distribution not considered (blood vs. target tissue)
- C_{max} vs. C_{ss}
- Exposure Routes dermal, inhalation

Gaps and Limitations Relevant for IVIVE to Predict Chemical PK/TK and PD/TD

- Mass balance issues
 - Non-specific binding to proteins in incubation
 - PK assays: Cl_{int} underprediction / C_{ss} overprediction
 - PD assays (overestimation of chemical at target site)
 - Non-specific binding to plastics in in vitro system
 - Chemical Volatility, Stability
- Consideration of transporters/uptake
 - Impact on metabolism/absorption (PK/TK)
 - To target site (PD/TD)
- Species differences

In Vitro Assays - Considerations Relevant for IVIVE to Predict Chemical PD/TD

- Span from cell-free to immortalized lines to physiologically relevant systems
- Consideration of relevant mass balance / uptake issues
- Coverage of biological space?
 - Suite of relevant assays
 - Genomics/transcriptomics
 - Sufficient coverage across potential adverse outcomes?
- Ability to discriminate reversible perturbation from irreversible effect, potential adverse outcome
- Temporality relating in vitro to in vivo

Consideration of Population Variability

¥

Plasma C_{ss} General Population

Population-based In Vitro-In Vivo Extrapolation

Integrating High-Throughput Pharmacokinetics with the ToxCast *In Vitro* Assays

Wetmore et al., 2014, Toxicol.Sci, 142(1):210-14

Integrating High-Throughput Pharmacokinetics with the ToxCast *In Vitro* Assays

Wetmore et al., 2014, Toxicol.Sci, 142(1):210-14

Comparison of C_{ss} Values Derived Across Multiple Lifestages and Subpopulations

Comparison of C_{ss} Values Derived Across Multiple Lifestages and Subpopulations

Wetmore et al., 2014, Toxicol Sci. 142(1):210-214.

Estimated Chemical-Specific Toxicokinetic Adjustment Factors

Chemical	Median C _{ss} for Healthy Population	95 th Percentile C _{ss} for Most Sensitive	Most Sensitive	Estimated HK _{AF}	% Contribution of Isozyme Differences to Average HK _{AF}
Acetochlor	0.026	0.15	Neonatal	6.7	86
Azoxystrobin	0.099	0.66	Neonatal	6.7	86
Bensulide	0.241	0.97	Neonatal	4.0	79
Carbaryl	0.043	0.49	Neonatal	11.4	87
Difenoconazole	0.201	0.49	Renal Insufficiency	3.5	99
Fludioxonil	0.38	4.37	Neonatal	11.5	87
Haloperidol	0.029	0.14	Neonatal	4.9	83
Lovastatin	0.001	0.009	Neonatal	6.5	90
Tebupirimfos	0.107	0.38	Renal Insufficiency	3.5	15

Matching Oral Equivalent Doses and Exposure Estimates for Subpopulations

Utility in a Tiered Testing Approach

Key Points

- Use of IVIVE tools to incorporate dosimetry has enabled a shift from a hazard-based to a risk-based interpretation of HTS data.
- Current in vitro in vivo assessments for environmental chemicals point to need for tools trained against relevant space for prediction refinement.
- IVIVE effort to evaluate PK variability in a manner that could 1) identify sensitive populations and 2) replace use of default safety factors in risk assessment.
- Using IVIVE in PD/TD will require additional considerations to understand chemical concentration at target.

Acknowledgements

The Hamner Institutes

Brittany Allen Mel Andersen Harvey Clewell Alina Efremenko Eric Healy Timothy Parker Reetu Singh Mark Sochaski Longlong Yang

External Collaborators

<u>US EPA</u> David Dix Keith Houck Richard Judson Daniel Rotroff Rusty Thomas John Wambaugh

Simcyp/Certara Lisa M. Almond Masoud Jamei

Funding

American Chemistry Council – Long Range Initiative Simcyp (Academic license)

References

- Rotroff, DM et al., 2010. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening. Toxicol. Sci., 117 (2):348-358.
- Wetmore, BA et al., 2012. Integration of Dosimetry, Exposure and High-Throughput Screening in Chemical Toxicity Assessment. Toxicol. Sci., 125(1):157-174.
- Wetmore, BA et al., 2013. Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays. Toxicol. Sci., 132(2):327-346.
- Wetmore, BA, 2015. Quantitative in vitro-in vivo extrapolation in a high-throughput environment. Toxicol. 332:94-101.
- Wambaugh, JF et al., 2015. Toxicokinetic Triage for Environmental Chemicals. Toxicol Sci., 147(1):55-67.
- Judson, RS et al., 2011. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment. Chem. Res. Toxicol., 24(4):451-62.
- Wetmore, BA et al., 2014. Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing. Toxicol. Sci., 142(1):210-214.
- Thomas, RS et al., 2013. Incorporating New Technologies into Toxicity Testing and Risk Assessment: Moving from a 21st Century Vision to a Data-Driven Framework. Toxicol. Sci., 136(1):4-18.

In Vitro-to-*In Vivo* Extrapolation for High-Throughput Prioritization and Decision-Making

- Webinars: First Wednesdays, 11:00AM E.D.T.
 - October 7 Barbara Wetmore: Setting the Stage
 - November 4 John Wambaugh: Model Development
 - December 2 Lisa Sweeney: Model Evaluation
 - January 6, 2016 TBD: State of the Science
- In-person Meeting: February 17-18, 2016
 - US EPA, Research Triangle Park, NC

