In Vitro – In Vivo Extrapolation for High-Throughput Prioritization and Decision-Making

Setting the Stage

Barbara A. Wetmore
The Hamner Institutes for Health Sciences
Research Triangle Park, NC USA 27709
bwetmore@thehamner.org
In Vitro-to-In Vivo Extrapolation for High-Throughput Prioritization and Decision-Making

- Webinars: First Wednesdays, 11:00AM E.D.T.
 - October 7 – Barbara Wetmore: Setting the Stage
 - November 4 – John Wambaugh: Model Development
 - December 2 – Lisa Sweeney: Model Evaluation
 - January 6, 2016 – TBD: State of the Science

- In-person Meeting: February 17-18, 2016
 - US EPA, Research Triangle Park, NC
Broad-Based Movement in Toxicology Towards *In Vitro* Testing and Hazard Prediction
High-Throughput Toxicity Testing Data
Difficulty Translating Nominal Testing Concentrations into In Vivo Doses

In Vitro - In Vivo Extrapolation

Definition: Utilization of *in vitro* experimental data to predict phenomena *in vivo*

- **IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics):**
 Fate of molecules/chemicals in body
 - Considers ADME; uses PK / PBPK modeling

- **IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):**
 Effect of molecules/chemicals at biological target *in vivo*
 - Assay design/selection important; perturbation as adverse/therapeutic effect, reversible/ irreversible

- **Both contribute to predict *in vivo* effects**
– IVIVE to Predict Pharmacokinetics –
Prioritization and Hazard Prediction Based on Nominal Concentrations Can Misrepresent Potential Health Risks

Protein Binding

Bioavailability

Reif et al. Environ Hlth Perspect 118:1714, 2010

-- IVIVE in a HT Environment --

Modeling *In Vivo* Pharmacokinetics Using *In Vitro* Assays

Human Hepatocytes (10 donor pool) → Hepatic Clearance → *In Vitro - In Vivo* Extrapolation → Steady State Blood Concentrations

Human Plasma (6 donor pool) → Plasma Protein Binding
-- IVIVE in a HT Environment --

Modeling *In Vivo* Pharmacokinetics Using *In Vitro* Assays

\[[\text{Conc}]_{SS} = \frac{\text{Dose Rate} \times \text{Body Weight}}{\text{CL}_{\text{WholeBody}}} \]

\[\text{CL}_R = \text{F}_{UB} \times \text{GFR} \quad \text{where GFR} \approx 6.7 \text{ L/hr} \]

\[\text{CL}_H = \frac{\text{F}_{UB} \times Q_L \times \text{CL}_{\text{Int}}}{Q_L + \text{F}_{UB} \times \text{CL}_{\text{Int}}} \quad \text{where } Q_L \approx 90 \text{ L/hr} \]

\[\text{CL}_{\text{Int}} = \text{HPGL} \times V_L \times \text{CL}_{\text{invitro}} \quad \text{where } \text{HPGL} \approx 137 \text{ million cells/g} \]

\[V_L \approx 1820 \text{ g} \]

- 100% Oral bioavailability assumed for both CL_R and CL_H
- Kinetics are assumed to be linear

- CL_R: renal clearance (L/hr)
- CL_H: hepatic clearance (L/hr)
- CL_{int}: intrinsic clearance (L/hr)
- GFR: glomerular filtration rate (L/hr)
- F_{UB}: fraction unbound in blood
- Q_L: hepatic blood flow (L/hr)
- HPGL: hepatocytes per gram liver
- V_L: volume of liver (g)
Integrating Human Dosimetry and Exposure with the ToxCast In Vitro Assays

309 EPA ToxCast Phase I Chemicals

Human Liver Metabolism

Human Plasma Protein Binding

Population-Based IVIVE Model

Upper 95th Percentile Css Among 10,000 Healthy Individuals of Both Sexes from 20 to 50 Yrs Old

~600 In Vitro ToxCast Assays

ToxCast AC50 Value

Plasma Concentration

Oral Exposure

Reverse Dosimetry

Oral Dose Required to Achieve Steady State Plasma Concentrations Equivalent to In Vitro Bioactivity (mg/kg/day)

Least Sensitive Assay

Most Sensitive Assay

Rotroff et al., Tox Sci., 2010

Wetmore et al., Tox Sci., 2012
Integrating Human Dosimetry and Exposure with the ToxCast *In Vitro* Assays

Oral Equivalent Dose (mg/kg/day)

Least Sensitive Assay

Oral Dose Required to Achieve Steady State Plasma Concentrations Equivalent to *In Vitro* Bioactivity

Most Sensitive Assay

What are humans exposed to?

Chemical

Rotroff et al., *Tox Sci.*, 2010
Wetmore et al., *Tox Sci.*, 2012
Pharmacokinetic Data Across 440 Chemicals Provides Insights into Distributions Across Tested Space

Distribution of Chemical $C_{ss} (\mu M)$

Distribution Information
- Median: 1 μM
- Upper 90th %ile: 111 μM
- Upper 95th %ile: 230 μM

Distribution Summary Statistics
- Median: 5.4
- Lower Quartile: 0.5
- Upper Quartile: 19.2

% Unbound
- Median: 7.83
- Lower Quartile: 0.00
- Upper Quartile: 36.70

Hepatic Clearance ($\mu L/min/10^6$ cells)

Cumulative Percent

Number of Values
How good are we at predicting *in vivo* C_{ss}?

ToxCast Phase I Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>In vivo-Derived C_{ss} (µM)</th>
<th>IVIVE $C_{ss}^{a,b}$ (µM)</th>
<th>IVIVE Caco-2c $C_{ss}^{a,b}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>9.05-90.05</td>
<td>39.25</td>
<td>40.43</td>
</tr>
<tr>
<td>Bisphenol-A</td>
<td>< 0.13d</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Cacodylic acid</td>
<td>1.80</td>
<td>3.06</td>
<td>--e</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>0.03</td>
<td>2.28</td>
<td>2.28</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.46</td>
<td>1.27</td>
<td>1.29</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td></td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>dihydrate</td>
<td></td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.17</td>
<td>2.48</td>
<td>2.56</td>
</tr>
<tr>
<td>PFOS</td>
<td>19,990f</td>
<td>153.23f</td>
<td>171.51f</td>
</tr>
<tr>
<td>PFOA</td>
<td>20,120f</td>
<td>13.25f</td>
<td>15.92f</td>
</tr>
<tr>
<td>Picloram</td>
<td>0.27</td>
<td>57.19</td>
<td>32.01</td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>0.45</td>
<td>13.76</td>
<td>15.20</td>
</tr>
<tr>
<td>Triclosan</td>
<td>2-10</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

ToxCast Phase II Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>In vivo-Derived C_{ss} (µM)</th>
<th>IVIVE $C_{ss}^{a,b}$ (µM)</th>
<th>IVIVE Caco-2c $C_{ss}^{a,b}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>1.1</td>
<td>0.52</td>
<td>0.57</td>
</tr>
<tr>
<td>2-Chloro-2'-deoxyadenosine</td>
<td>0.28</td>
<td>1.36</td>
<td>0.58</td>
</tr>
<tr>
<td>Coumarin</td>
<td>0.01-0.02</td>
<td>13.63</td>
<td>15.40</td>
</tr>
<tr>
<td>Diphenhydramine HCl</td>
<td>0.11-0.16</td>
<td>3.18</td>
<td>3.57</td>
</tr>
<tr>
<td>6-Propyl-2-thiouracil</td>
<td>1.10</td>
<td>1.58</td>
<td>1.80</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>0.022</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>0.2-1.8</td>
<td>11.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Candoxatril</td>
<td>0.023</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Flutamide</td>
<td>0.004-0.005</td>
<td>0.57</td>
<td>0.64</td>
</tr>
<tr>
<td>PK 11195</td>
<td>0.14</td>
<td>0.58</td>
<td>0.66</td>
</tr>
<tr>
<td>5,5'-Diphenylhydantoin</td>
<td>4.92</td>
<td>1.59</td>
<td>1.59</td>
</tr>
<tr>
<td>Triamcinolone</td>
<td>0.05-0.29</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Volinanserin</td>
<td>0.037</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Zamifenacin</td>
<td>2.86</td>
<td>0.57</td>
<td>0.64</td>
</tr>
</tbody>
</table>
How good are we at predicting *in vivo* C_{ss}?

ToxCast Phase I Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>C_{ss} (µM)</th>
<th>IVIVE C_{ss} (µM)</th>
<th>Caco-2 C_{ss} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>1.1</td>
<td>0.52</td>
<td>0.57</td>
</tr>
<tr>
<td>2-Chloro-2'-deoxyadenosine</td>
<td>0.28</td>
<td>1.36</td>
<td>0.58</td>
</tr>
<tr>
<td>Coumarin</td>
<td>0.01-0.02</td>
<td>13.63</td>
<td>15.40</td>
</tr>
<tr>
<td>Diphenhydramine HCl</td>
<td>0.11-0.16</td>
<td>3.18</td>
<td>3.57</td>
</tr>
<tr>
<td>6-Propyl-2-thiouracil</td>
<td>1.10</td>
<td>1.58</td>
<td>1.80</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>0.022</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>0.2-1.8</td>
<td>11.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Candoxatril</td>
<td>0.023</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Flutamide</td>
<td>0.004-0.005</td>
<td>0.57</td>
<td>0.64</td>
</tr>
<tr>
<td>PK 11195</td>
<td>0.14</td>
<td>0.58</td>
<td>0.66</td>
</tr>
<tr>
<td>5,5'-Diphenylhydrantoin</td>
<td>4.92</td>
<td>1.59</td>
<td>1.59</td>
</tr>
<tr>
<td>Triamcinolone</td>
<td>0.05-0.29</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Volinanserin</td>
<td>0.037</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Zamifenacin</td>
<td>2.86</td>
<td>0.57</td>
<td>0.64</td>
</tr>
</tbody>
</table>

ToxCast Phase II Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>C_{ss} (µM)</th>
<th>IVIVE C_{ss} (µM)</th>
<th>Caco-2 C_{ss} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>9.05-90</td>
<td>0.52</td>
<td>0.57</td>
</tr>
<tr>
<td>Bisphenol-A</td>
<td>< 0.13</td>
<td>1.36</td>
<td>0.58</td>
</tr>
<tr>
<td>Cacodylic acid</td>
<td>1.80</td>
<td>13.63</td>
<td>15.40</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>0.03</td>
<td>3.18</td>
<td>3.57</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>0.03</td>
<td>1.58</td>
<td>1.80</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.46</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Oxytetracycline dihydrate</td>
<td>0.2-1.8</td>
<td>11.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.17</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>PFOS</td>
<td>19.99</td>
<td>0.57</td>
<td>0.64</td>
</tr>
<tr>
<td>PFOA</td>
<td>20.12</td>
<td>0.58</td>
<td>0.66</td>
</tr>
<tr>
<td>Picloram</td>
<td>0.27</td>
<td>1.59</td>
<td>1.59</td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>0.45</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Triclosan</td>
<td>2-10</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note
- ~60% are within 10-fold of *in vivo* C_{ss} values
- ~80% are within 20-fold of *in vivo* C_{ss} values

IVIVE Webinar | October 7, 2015
Reasons for C_{ss} Overprediction - Opportunities for Refinement -

- Not all routes of metabolic clearance are captured
 - Extrahepatic (intestinal, renal, etc.) metabolism
 - Nonhepatocyte-mediated clearance
- Hepatocyte suspensions unable to detect clearance of low turnover compounds
- Absorption / Bioavailability assumed 100%
- Restrictive vs. Nonrestrictive clearance
- Conservative assumptions drive poor predictivity for chemicals known to be rapidly cleared in vivo
Toxicokinetic Triage for Environmental Chemicals

Wambaugh et al., Tox Sci., 2015
Comparing Dosimetry-Adjusted Oral Equivalents against Nominal AC\textsubscript{50} Concentrations

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Chemical</th>
<th>95th %ile</th>
<th>Assay Name (abridged)</th>
<th>AC50 (µM)</th>
<th>Oral Equivalent (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4291-63-8</td>
<td>2-Chloro-2'-deoxyadenosine</td>
<td>2.0713</td>
<td>BSK_SAg_PBMCCytotoxicity</td>
<td>1</td>
<td>0.4828</td>
</tr>
<tr>
<td>1806-26-4</td>
<td>4-Octylphenol</td>
<td>1.4109</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>0.7088</td>
</tr>
<tr>
<td>57-97-6</td>
<td>7,12-Dimethylbenz(a)anthracene</td>
<td>3.9083</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>0.2559</td>
</tr>
<tr>
<td>148-24-3</td>
<td>8-Hydroxyquinoline</td>
<td>0.0403</td>
<td>APR_p53Act</td>
<td>1</td>
<td>24.8188</td>
</tr>
<tr>
<td>484-17-3</td>
<td>9-Phenanthrol</td>
<td>2.1423</td>
<td>APR_CellLoss</td>
<td>1</td>
<td>0.4668</td>
</tr>
<tr>
<td>57-87-1</td>
<td>7,12-Dimethylbenz(a)anthracene</td>
<td>3.9083</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>0.2559</td>
</tr>
<tr>
<td>120-12-7</td>
<td>Anthracene</td>
<td>0.5800</td>
<td>APR_MitoMembPot</td>
<td>1</td>
<td>1.7241</td>
</tr>
<tr>
<td>1912-24-9</td>
<td>Atrazine</td>
<td>0.5998</td>
<td>APR_p53Act</td>
<td>1</td>
<td>1.6672</td>
</tr>
<tr>
<td>55285-14-8</td>
<td>Carbasulfan</td>
<td>0.0056</td>
<td>NVS_ENZ_rAChE</td>
<td>1</td>
<td>177.2814</td>
</tr>
<tr>
<td>7173-51-5</td>
<td>Didecyl dimethyl ammonium chloride</td>
<td>3.3686</td>
<td>APR_CellLoss</td>
<td>1</td>
<td>0.2969</td>
</tr>
<tr>
<td>76-87-9</td>
<td>Fentin hydroxide</td>
<td>318.039</td>
<td>APR_CellLoss</td>
<td>1</td>
<td>0.0001</td>
</tr>
<tr>
<td>99-76-3</td>
<td>Methylparaben</td>
<td>0.1768</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>5.6561</td>
</tr>
<tr>
<td>50-65-7</td>
<td>Niclosamide</td>
<td>0.3073</td>
<td>APR_MitoMass</td>
<td>1</td>
<td>3.2544</td>
</tr>
<tr>
<td>50-65-7</td>
<td>Niclosamide</td>
<td>0.3073</td>
<td>APR_NuclearSize</td>
<td>1</td>
<td>3.2544</td>
</tr>
<tr>
<td>50-65-7</td>
<td>Niclosamide</td>
<td>0.3073</td>
<td>APR_OxidativeStress</td>
<td>1</td>
<td>3.2544</td>
</tr>
<tr>
<td>26530-20-1</td>
<td>Ochthinone</td>
<td>0.6864</td>
<td>APR_MitoticArrest</td>
<td>1</td>
<td>1.4569</td>
</tr>
<tr>
<td>57-83-0</td>
<td>Progesterone</td>
<td>0.2007</td>
<td>APR_MitoMembPot</td>
<td>1</td>
<td>4.9835</td>
</tr>
<tr>
<td>83-79-4</td>
<td>Rotenone</td>
<td>0.3131</td>
<td>APR_MitoticArrest</td>
<td>1</td>
<td>3.1941</td>
</tr>
<tr>
<td>79902-63-9</td>
<td>Simvastatin</td>
<td>0.6379</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>1.5677</td>
</tr>
<tr>
<td>79902-63-9</td>
<td>Simvastatin</td>
<td>0.6379</td>
<td>APR_MitoMass</td>
<td>1</td>
<td>1.5677</td>
</tr>
<tr>
<td>156052-68-5</td>
<td>Zoxamide</td>
<td>168.1532</td>
<td>APR_CellCycleArrest</td>
<td>1</td>
<td>0.0059</td>
</tr>
<tr>
<td>156052-68-5</td>
<td>Zoxamide</td>
<td>168.1532</td>
<td>APR_MitoMass</td>
<td>1</td>
<td>0.0059</td>
</tr>
</tbody>
</table>

Same AC\textsubscript{50} 550-fold lower Oral Equivalent after Dosimetry Adjustment
Incorporating Dosimetry-Adjusted ToxCast Bioactivity Data with HT ExpoCast Predictions

Wetmore et al., Tox. Sci, 2015
Providing an MOE Context to Data

Use and Assay Information for Chemicals with the 20 Lowest Activity:Exposure Ratios

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Description/Use</th>
<th>No. Assay Hits where MHEa AERb \textless 100</th>
<th>AC\textsubscript{50} (\textmu M)c</th>
<th>Oral Equivalent (\text{mg/kg/day})</th>
<th>Exposure Total (MHE)</th>
<th>AER (MHE AER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannic acid</td>
<td>Plant polyphenol; food, drug uses; mordant during dyeing process</td>
<td>5</td>
<td>0.0002</td>
<td>5.83E-04</td>
<td>1.35E-02 (3.36E-02)</td>
<td>0.043 (0.02)</td>
</tr>
<tr>
<td>Triphenyl phosphate</td>
<td>Plasticizer; fire retardant</td>
<td>3</td>
<td>0.0006</td>
<td>7.66E-04</td>
<td>6.57E-03 (1.41E-02)</td>
<td>0.117 (0.054)</td>
</tr>
<tr>
<td>Heptadecafluorooctanesulfonic acid potassium salt</td>
<td>Organofluorine</td>
<td>12</td>
<td>0.013</td>
<td>5.99E-05</td>
<td>3.21E-04 (8.72E-04)</td>
<td>0.187 (0.069)</td>
</tr>
<tr>
<td>Mirex</td>
<td>Banned organochlorine insecticide</td>
<td>3</td>
<td>0.01144</td>
<td>1.61E-04</td>
<td>1.55E-04 (3.13E-04)</td>
<td>1.040 (0.516)</td>
</tr>
<tr>
<td>Ammonium perfluorooctanoate</td>
<td>Organofluorine</td>
<td>9</td>
<td>0.20182</td>
<td>7.48E-04</td>
<td>3.24E-04 (1.09E-03)</td>
<td>2.310 (0.684)</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>Solvent; plasticizer</td>
<td>3</td>
<td>1.28</td>
<td>2.04E-02</td>
<td>4.03E-03 (6.60E-03)</td>
<td>5.05 (3.09)</td>
</tr>
<tr>
<td>Potassium perfluorohexanesulfonate</td>
<td>Organofluorine</td>
<td>2</td>
<td>0.0825</td>
<td>3.09E-04</td>
<td>3.09E-05 (7.27E-05)</td>
<td>10.02 (4.26)</td>
</tr>
<tr>
<td>Dioctyl phthalate</td>
<td>plasticizer</td>
<td>6</td>
<td>4.88</td>
<td>7.62E-02</td>
<td>7.49E-03 (1.34E-02)</td>
<td>10.18 (5.68)</td>
</tr>
<tr>
<td>Diethylstilbesterol</td>
<td>Nonsteroidal estrogen</td>
<td>6</td>
<td>0.000074</td>
<td>1.61E-04</td>
<td>1.49E-05 (2.84E-05)</td>
<td>10.82 (5.68)</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>Antihistamine drug</td>
<td>2</td>
<td>0.0238</td>
<td>4.91E-03</td>
<td>1.95E-04</td>
<td>25.21</td>
</tr>
</tbody>
</table>

a MHE: Maximum Human Exposure

b AER: Acceptable Exposure Ratio

c AC\textsubscript{50}: Concentration that inhibits 50% of the maximum observed effect
Comparing *In Vitro* ToxCast-derived Points of Departure Against *In Vivo* Rodent LELs

- Rat Liver Metabolism
- Rat Plasma Protein Binding
- Computational IVIVE Model
- Blood Concentrations at Steady State
- ~600 *In Vitro* ToxCast Assays
- ToxCast AC$_{50}$ Value
- Plasma Concentration
- Oral Exposure
- Reverse Dosimetry
- Oral Dose Required to Achieve Steady State Plasma Concentrations Equivalent to *In Vitro* Bioactivity

Wetmore *et al.*, *Tox Sci.*, 2013
Comparing *In Vitro* ToxCast-derived Points of Departure Against *In Vivo* Rodent LELs

In Vivo Low Effect Level from ToxRefDB (mg/kg/day)

Minimum *In Vitro* Rat Oral Equivalent Dose (mg/kg/day)

Subset of 59 Chemicals from ToxCast Phase I

Wetmore *et al.*, *Tox Sci.*, 2013
The Most Sensitive *In Vitro* Assay Provides a Conservative Estimate of the Point-of-Departure

Spanned 38 *In Vivo* Endpoints across Multiple Tissues, Organ Systems, and Study Types (Repro, Chronic, and Dev)

Log Ratio ToxRef Min LEL:ToxCast Min Oral Equivalent Dose

Distribution Summary Statistics
- Median: 1.82 (66.07)
- Upper Quartile: 2.55 (354.81)
- Lower Quartile: 0.95 (8.91)

Wetmore *et al.*, Tox Sci., 2013
High-Throughput Risk Assessment
Transitioning from Potent Hits to Pathway Activating Doses

Judson et al., 2011
Gaps and Limitations of IVIVE Approach to Predict Chemical PK/TK

- Metabolism not considered
 - Transition to metabolically competent systems will require different approach
 - Bioactivating vs. detoxifying metabolism; predictive tools?
- Lack of in vivo PK data to validate IVIVE for environmental chemicals
- Lack of appropriate training sets to validate in silico predictions
 - plasma protein binding, intrinsic clearance, metabolism
- Tissue distribution not considered (blood vs. target tissue)
- C_{max} vs. C_{ss}
- Exposure Routes – dermal, inhalation
Gaps and Limitations
Relevant for IVIVE to Predict Chemical PK/TK and PD/TD

• Mass balance issues
 – Non-specific binding to proteins in incubation
 • PK assays: C_{int} underprediction / C_{ss} overprediction
 • PD assays (overestimation of chemical at target site)
 – Non-specific binding to plastics in in vitro system
 – Chemical Volatility, Stability
• Consideration of transporters/uptake
 – Impact on metabolism/absorption (PK/TK)
 – To target site (PD/TD)
• Species differences
In Vitro Assays - Considerations Relevant for IVIVE to Predict Chemical PD/TD

• Span from cell-free to immortalized lines to physiologically relevant systems
• Consideration of relevant mass balance / uptake issues
• Coverage of biological space?
 – Suite of relevant assays
 – Genomics/transcriptomics
 – Sufficient coverage across potential adverse outcomes?
• Ability to discriminate reversible perturbation from irreversible effect, potential adverse outcome
• Temporality – relating in vitro to in vivo
Consideration of Population Variability

Primary Hepatocytes → Hepatic Clearance \(Cl_{in\,vitro} \) → SimCYP → General Population

- \(Plasma\,C_{ss} \neq Plasma\,C_{ss} \) General Population
Population-based *In Vitro-In Vivo* Extrapolation

Primary Hepatocytes

Hepatic Clearance
\[Cl_{\text{in vitro}} \]

Plasma \(C_{ss} \)

General Population

Plasma \(C_{ss} \) for:
- Neonates
- Asians
- Northern Europeans
- Children
- And so on...

Intrinsic Clearance Rates

- CYP1A2
- CYP3A4
- ClrCYP1A2
- ClrCYP3A4

- CYP2E1
- CYP3A5
- UGT1A1
- ClrCYP2E1
- ClrCYP3A5
- ClrUGT1A1

- CYP2C9
- CYP2B6
- ClrCYP2C9
- ClrCYP2B6

- UGT2B7
- ClrUGT2B7

- CYP2C8
- CYP2C19
- ClrCYP2C8
- ClrCYP2C19

- UGT1A4
- ClrUGT1A4

- CYP2D6
- ClrCYP2D6

- CYP3A5
- ClrCYP3A5

- CYP2C19
- ClrCYP2C19

- UGT1A1
- ClrUGT1A1

- CYP2B6
- ClrCYP2B6

- UGT2B7
- ClrUGT2B7

- CYP2E1
- ClrCYP2E1

- CYP2C9
- ClrCYP2C9

- UGT1A4
- ClrUGT1A4

- CYP2D6
- ClrCYP2D6

- CYP3A5
- ClrCYP3A5

- CYP2C19
- ClrCYP2C19

- UGT1A1
- ClrUGT1A1

- CYP2B6
- ClrCYP2B6

- UGT2B7
- ClrUGT2B7

- CYP2E1
- ClrCYP2E1

- CYP2C9
- ClrCYP2C9

- UGT1A4
- ClrUGT1A4

- CYP2D6
- ClrCYP2D6

- CYP3A5
- ClrCYP3A5

- CYP2C19
- ClrCYP2C19

- UGT1A1
- ClrUGT1A1

- CYP2B6
- ClrCYP2B6
Integrating High-Throughput Pharmacokinetics with the ToxCast In Vitro Assays

Oral Dose Required for Specific Subpopulations to Achieve Steady State Plasma Concentrations Equivalent to In Vitro Bioactivity (mg/kg/day)

Population-Based IVIVE Model

Plasma Concentration

Reverse Dosimetry

~600 In Vitro ToxCast Assays

ToxCast AC_{50} Value

Oral Exposure

Steady State Plasma Concentrations for Different Subpopulations

~600 In Vitro ToxCast Assays

Recombinant Enzyme Metabolism

Human Plasma Protein Binding

Population: A B C

Least Sensitive Assay

Most Sensitive Assay

Wetmore et al., 2014, Toxicol.Sci, 142(1):210-14

Wetmore et al., 2014, Toxicol.Sci, 142(1):210-14
Integrating High-Throughput Pharmacokinetics with the ToxCast In Vitro Assays

Comparison of C_{ss} Values Derived Across Multiple Lifestages and Subpopulations

Carbaryl

HK$_{AF}$ = 11.4

Upper 95th percentile C_{ss}

Lifestage or Subpopulation

(Age (yr) or Ethnic)

HK$_{AF}$: human toxicokinetic adjustment factor
Comparison of C_{ss} Values Derived Across Multiple Lifestages and Subpopulations

Estimated Chemical-Specific Toxicokinetic Adjustment Factors

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Median C_{ss} for Healthy Population</th>
<th>95th Percentile C_{ss} for Most Sensitive</th>
<th>Most Sensitive</th>
<th>Estimated HK_{AF}</th>
<th>% Contribution of Isozyme Differences to Average HK_{AF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor</td>
<td>0.026</td>
<td>0.15</td>
<td>Neonatal</td>
<td>6.7</td>
<td>86</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>0.099</td>
<td>0.66</td>
<td>Neonatal</td>
<td>6.7</td>
<td>86</td>
</tr>
<tr>
<td>Bensulide</td>
<td>0.241</td>
<td>0.97</td>
<td>Neonatal</td>
<td>4.0</td>
<td>79</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>0.043</td>
<td>0.49</td>
<td>Neonatal</td>
<td>11.4</td>
<td>87</td>
</tr>
<tr>
<td>Difenoconazole</td>
<td>0.201</td>
<td>0.49</td>
<td>Renal Insufficiency</td>
<td>3.5</td>
<td>99</td>
</tr>
<tr>
<td>Fludioxonil</td>
<td>0.38</td>
<td>4.37</td>
<td>Neonatal</td>
<td>11.5</td>
<td>87</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>0.029</td>
<td>0.14</td>
<td>Neonatal</td>
<td>4.9</td>
<td>83</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>0.001</td>
<td>0.009</td>
<td>Neonatal</td>
<td>6.5</td>
<td>90</td>
</tr>
<tr>
<td>Tebupirimfos</td>
<td>0.107</td>
<td>0.38</td>
<td>Renal Insufficiency</td>
<td>3.5</td>
<td>15</td>
</tr>
</tbody>
</table>
Matching Oral Equivalent Doses and Exposure Estimates for Subpopulations
Utility in a Tiered Testing Approach

Tier 1 Testing

- *In Vitro Assays for Bioactivity*
 - Weak, Non-Specific Interacting Chemicals
 - Define First Order Margin-of-Exposure
 - Potent, Specific Interacting Chemicals
 - Define Tentative Mode-of-Action
 - Human *In Vitro* Pharmacokinetic Assays and IVIVE Modeling
 - Conservative First Order Human Exposure Characterization

MOE >100 to >1000

STOP

Tier 2 Testing

- Short-term Rodent Transcriptomic Studies
 - Define Second Order Margin-of-Exposure
- Confirm *In Vivo* Mode-of-Action and Human Relevance
 - Refined Pharmacokinetic Estimates
 - Refined Second Order Human Exposure Characterization

MOE >100 to >1000

STOP

STOP

Tier 3 Testing

[Standard Tox Studies]

Thomas et al., 2013, *Toxicol. Sci.*
Key Points

• Use of IVIVE tools to incorporate dosimetry has enabled a shift from a hazard-based to a risk-based interpretation of HTS data.

• Current in vitro – in vivo assessments for environmental chemicals point to need for tools trained against relevant space for prediction refinement.

• IVIVE effort to evaluate PK variability in a manner that could 1) identify sensitive populations and 2) replace use of default safety factors in risk assessment.

• Using IVIVE in PD/TD will require additional considerations to understand chemical concentration at target.
Acknowledgements

The Hamner Institutes
Brittany Allen
Mel Andersen
Harvey Clewell
Alina Efremenko
Eric Healy
Timothy Parker
Reetu Singh
Mark Sochaski
Longlong Yang

External Collaborators
US EPA
David Dix
Keith Houck
Richard Judson
Daniel Rotroff
Rusty Thomas
John Wambaugh

Simcyp/Certara
Lisa M. Almond
Masoud Jamei

Funding
American Chemistry Council –
Long Range Initiative
Simcyp (Academic license)
References

In Vitro-to-In Vivo Extrapolation for High-Throughput Prioritization and Decision-Making

- **Webinars: First Wednesdays, 11:00AM E.D.T.**
 - October 7 – Barbara Wetmore: Setting the Stage
 - November 4 – John Wambaugh: Model Development
 - December 2 – Lisa Sweeney: Model Evaluation
 - January 6, 2016 – TBD: State of the Science

- **In-person Meeting: February 17-18, 2016**
 - US EPA, Research Triangle Park, NC