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Overview

• Risk prioritization: what and why
• Quick review: existing work on IVIVE for high-throughput risk 

prioritization with reverse TK
• Quick overview of general reverse TK procedure
• Activity-exposure ratio

• Our goals with this work
• HTTK-Pop: our population simulator for HT toxicokinetics
• Prioritization results using HTTK-Pop
• Areas for future work



Need for risk prioritization

• EPA authorized to assess risk of environmental chemicals [GAO 2005]

• Approx. 30,000 chemicals in wide commercial use [Judson et al 2009]

• Approx. 700-1000 new chemicals on the market every year [GAO 2005]

• Traditional in vivo approaches to tox characterization can cost 
$millions and take years per chemical [Judson et al. 2009]

• Need to triage: which chemicals should be prioritized for further 
testing? [Wambaugh et al. 2015]

Need low-cost, high-throughput methods of risk prioritization



Low 
Priority

Medium 
Priority

High
Priority

High throughput risk prioritization
Potential hazard vs. potential exposure
• Exposure: HT model frameworks (e.g. ExpoCast) 

[Wambaugh et al. 2013, 2014]
• Inferred/predicted based on biomonitoring 

data
• Hazard: in vitro HTS bioactivity assays (e.g.

ToxCast) [Knudsen et al. 2015]
• Dose-response data on >1800 chemicals for 

>800 assays (publicly available)

Relate in vitro bioactivity to in vivo toxicity and risk:
In vitro-in vivo extrapolation (IVIVE) [Bois et al. 2010, 

Wetmore et al. 2012; Judson et al. 2014] —
using reverse toxicokinetics approach [Tan et al. 2006, 

2007; Rotroff et al. 2010; Wetmore et al. 2012]

http://www.epa.gov/chemical-research/toxicity-forecasting


Reverse toxicokinetics: 
Convert in vitro bioactive concentration 
into equivalent dose



Monte Carlo sampled 
TK model parameters

Fixed dose
(1 mg/kg/day) Css from fixed dose (uM) across “individuals”

Take 95th percentile (conservative)

ToxCast OEDs across assays (mg/kg/day)

ToxCast AC50s across assays (uM)

Compare to range of exposures

Oral Equiv. Dose =

Fixed dose ×
ToxCast AC50

𝐶𝐶𝑠𝑠𝑠𝑠 from fixed dose

Summary: Reverse TK procedure



Activity-exposure ratio
[Wetmore et al. 2012, 2014, 2015] 

AER =
Oral Equiv. Dose

Estimated exposure

(figure adapted from Wetmore et al. 2012)

AER <=1 : Exposure potentially high 
enough to cause bioactivity

AER >> 1: Exposure less likely to be 
high enough to cause bioactivity



TK model: 3 compartment steady-state

• Used in previous risk prioritization work:
• Rotroff et al. 2010
• Wetmore et al. 2012, 2014, 2015
• Wambaugh et al. 2015

• “3 compartment”: equiv. to steady-state liver concentration of a 3-compartment 
model (liver and gut) without partition coefficients

• Also equiv. to steady-state concentration in 1-compartment model with infusion dosing

• Zero-order uptake of daily dose from gut; 100% bioavailability
• First-order hepatic metabolism

• “Well-stirred” model to extrapolate CLint,hep from in vitro measurements

• Passive renal clearance
• Simple; can be parameterized for large number of chemicals

𝐶𝐶𝑠𝑠𝑠𝑠 = dose
𝐺𝐺𝐺𝐺𝐺𝐺 ×𝐺𝐺𝑢𝑢𝑢𝑢 +

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙×𝐹𝐹𝑢𝑢𝑢𝑢×𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖,ℎ𝑙𝑙𝑒𝑒
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+𝐹𝐹𝑢𝑢𝑢𝑢×𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖,ℎ𝑙𝑙𝑒𝑒



3 compartment steady-state model parameters
Chemical-specific parameters Source of parameter values
Fraction unbound in plasma (Fub) Measured in HT in vitro assays (Wetmore et al. 2012, 

2014, 2015): pooled adult plasma samples and 
pooled adult hepatocytes

Intrinsic clearance rate (CLint)

Physiological parameters Monte Carlo sampling to simulate population 
variability

Body weight SimCYP [Jamei et al. 2009]: proprietary correlated 
Monte Carlo (used by Wetmore et al. 2012, 2014, 
2015; typically N. Eur. Caucasian)
—Or—
Independent Monte Carlo: normal dist. about 
literature average values, typically for healthy adult 
Caucasian male (used by Wambaugh et al. 2015)

Tissue volumes & blood flows
Glomerular filtration rate (GFR)
Hepatocellularity



Our goals

• Open-source
• R package httk, available on CRAN (Pearce et al., J Stat Soft 2016)
• General TK models can be parameterized for many chemicals
• Currently includes independent Monte Carlo approach [Wambaugh et al. 2015]
• Add open-source correlated Monte Carlo simulation approach

• Ability to simulate modern U.S. population
• Compare directly to US population exposure estimates
• Including potentially sensitive demographic subgroups 

• Identified as important issue in risk assessment framework [EPA 2006]

https://cran.r-project.org/web/packages/httk/index.html


ExpoCast: Exposures inferred for US population groups, from 
CDC NHANES urine biomonitoring data [Wambaugh et al. 2012, 2014]

Figure adapted from Wambaugh et al., Environ Sci Technol 2014
See also Wambaugh et al., Environ Sci Technol 2012 

For 10 U.S. demographic groups:
1. Total
2. Age 6-11
3. Age 12-19
4. Age 20-65
5. Age >65
6. BMI <= 30
7. BMI > 30
8. Males
9. Females
10. Reproductive-Age Females 

(ages 16-49)

106 compounds; 50 HTTK compounds



HTTK-Pop: Population simulator for HTTK

Correlated Monte Carlo 
sampling of physiological 
model parameters

Body weight
Tissue masses
Tissue blood flows
GFR
Hepatocellularity

Large, ongoing survey of US population: 
demographic, body measures, medical exam, 
biomonitoring (health and exposure), ….

Designed to be representative of US population 
according to census data

Data sets publicly available
(http://www.cdc.gov/nchs/nhanes.htm)

Source of data: 
Centers for Disease Control, 
National Health and Nutrition Examination Survey

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm


HTTK-Pop: Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations 
from literature

(+ residual marginal 
variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)



HTTK-Pop: Generating demographic subgroups

NHANES quantities sampled from appropriate conditional distribution (given specifications)
Physiological parameters predicted accordingly

Simulated populations matching the 10 ExpoCast demographic groups (N=1000 in each)

User can specify…. Default if not specified
Age limits 0-79 years
Sex (# males, # females) NHANES proportions
Race/ethnicity (5 NHANES categories) NHANES proportions
BMI/weight categories NHANES proportions



Example: Age 20-65

GFR = fCKD-EPI(Scr, age, 
race, sex) 

Age, years

(NHANES quantities)

(Predicted with 
literature regressions)



Example: Age 20-65

GFR = fCK
race, sex

Age, years

(NHANES quantities)

D-EPI(Scr, age, 
) 

(Predicted with 
literature regressions)



Example: Age 20-65

GFR = fCKD-EPI(Scr, age, 
race, sex) 

Age, years

(NHANES quantities)

(Predicted with 
literature regressions)



Chemical-specific parameters:
assume independent distributions about in vitro measured 
values

Intrinsic clearance Fraction unbound in plasma

Assume 5% of population are poor metabolizers Assume Fub distribution censored below average LOD (0.01)
See: Wambaugh et al. Toxicol Sci 2015

“PMs”
“Non-PMs”



HTTK-Pop

Fixed dose
(1 mg/kg/day) Css from fixed dose (uM) across “individuals”

Take 95th percentile (conservative)

ToxCast OEDs across assays (mg/kg/day)

ToxCast AC50s across assays (uM)

Compare to ExpoCast exposures

Oral Equiv. Dose =

Fixed dose ×
ToxCast AC50

𝐶𝐶𝑠𝑠𝑠𝑠 from fixed dose

Reverse TK: 50 chemicals, 10 ExpoCast demographic groups



AER

Range of 
inferred 

exposures

Range of 
OEDs

OEDs and inferred exposures for total U.S. population



Subgroups:
AER difference from 
total population 
(order-of-
magnitude)

Chemicals by 
increasing AER for 
Total population

<1
1

100

1 000
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(order of magnitude)
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AER

Exposure Oral equiv. dose

Females
Reproductive-Age Females

Males



AER

Exposure Oral equiv. dose

Age GT 65
BMI GT 30



AER

Exposure Oral equiv. dose

BMI LE 30
Age 6-11

Age 12-19



Q. Why the consistent differences in oral equiv. dose for some groups?
A. Consistent differences in physiology.

• Oral equiv. dose is linearly 
related to steady-state 
plasma concentration (Css), 
which depends on total 
clearance per kg body 
weight

• Total clearance per kg 
depends on CLint, body 
weight, Vliver, Qliver, 
hepatocellularity, GFR

• CLint is drawn from same 
distribution for all groups 
(in vitro data from pooled 
adult hepatocytes)

• Others: see figure at right



Evaluating predicted clearance differences 
between demographic groups

Figure adapted from 
Ginsberg et al. 2002

Ages 2-12

Ages 12-18

Adults (line)

Ginsberg et al. 2002: in vivo PK database in infants, children, and adults
Summary of in vivo clearance/kg body weight in various age groups 

compared to adults (for 27 chemicals):
Why? 
CYP enzymes reach 
near-adult 
abundances and 
activity before 1 year 
of age, plus greater 
liver blood flow and 
liver size/kg body 
weight (Ginsberg et al. 
2003)



Future improvements
• More realistic Fub distribution?

• Plasma protein concentration variability: age, gender, disease 
state…? [Johnson et al. 2006, Israili et al. 2001]

• Albumin or AAG binding? [Routledge 1986]

• More realistic CLint distribution?
• Isozyme abundances and activity: varies with age, ethnicity (at least) 

[Yasuda et al. 2008, Howgate et al. 2006, Johnson et al. 2006]

• Isozyme-specific data & modeling [Wetmore et al. 2014]

• Isozyme-specific metabolism assays not HT
• In silico predictions of isozyme-specific metabolism? Not easy!

• Existing data is mostly for pharmaceuticals [Peach et al. 2014]

• Other sources of HT metabolism variability data?



Conclusions
• HTTK-Pop: population physiology simulator

• Open-source
• Correlated Monte Carlo approach
• Based on NHANES data: Modern US population
• Can be used to simulate various demographic subgroups

• Use HTTK-Pop to do IVIVE of ToxCast in vitro bioactivity 
data for different groups

• Range of oral equivalent doses to compare with estimated 
potential exposures for each group

• Differences in physiology between groups → differences in oral 
equiv. doses

• Differences in exposure between groups inferred from NHANES 
exposure biomonitoring (ExpoCast)

• AERs up to 6-fold different from total population
• HTTK-Pop + ToxCast + ExpoCast = HT AER prioritization for 

potentially sensitive subpopulations
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Thank you!
Questions?
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