

Toxicokinetics in Risk Assessment: From Predictive Evaluations to Regulatory Testing

Michael Bartels The Dow Chemical Company

Outline

- Product Development and Registration Timeline
 - Empirical and Predictive Toxicokinetics
- GastroPlus Validations
- High-Throughput applications of GastroPlus for IVIVE

Product Development Timeline

Discovery	Pre- Development	Developmer	nt Post Registration	Re- Registration
Toxicokinetic activities		ADME study		
		(OECD 417)	High-end	
	Probe AME		PBPK models	
	<i>in vivo</i> study		(interspecies &	
	(4 species)	In vivo	multiple routes)	
In silico		Toxicokinetics		
Toxicokinetic		Endpoint		
modeling		Preliminary		
modoling		PBPK model		
	In vitro	(interspecies)		<i>In silico</i> High
	Comparative metabolism			throughput
	study (EU)			PBPK models
	Sludy (LO)			(IVIVE)

Product Development Timeline

High-end PBPK models (interspecies & multiple routes)

Modeling software criteria:

Support for multiple exposure routes and regimens

Oral, Inhalation, Dermal (critical for relevant Risk Assessments)

Acute, steady-state

Incorporates critical QSARs for:

Absorption rates and amounts

Metabolic clearance

Plasma protein binding

Tissue distribution

Based on Compartmental PK or PBPK designs

Provides model predictions of parent compound and metabolite(s)

Supports various species and lifestages

Minimal to no coding required

Best option for regulatory buy-in

Batch modeling feature

Selected: GastroPlus[™] from Simulations Plus

Modeling software criteria:

GastroPlus validated primarily with pharmaceutical compounds delivered via the oral route

Needed to validate QSAR and PK / PBPK predictions for:

Broad range of chemistries for non-pharmaceuticals

- Oral, Inhalation, Dermal exposure routes
 - Inhalation modeling for non-volatile compounds only
 - Multiple dermal formulation types

Multi-step validation plan

- Accuracy of physical-chemical property predictions pKa, LogP
- Accuracy of pharmacokinetic parameter predictions
 - Metabolic clearance, plasma protein binding, Fa%, F%
- Accuracy of systemic exposure predictions
 - Cmax, AUC

Page 7

Advanced Compartmental Absorption and Transit Model (ACAT™)

MB 2.18.16

٠

٠

Experimental vs. Predicted pKa Values

from ADMET Predictor model of GastroPlus[™] (ADMET) or Pipeline Pilot[™] (PP)

The predicted pKa values from ADMET correlated well with the literature data and were better than those predicted by PP

Experimental vs. Predicted LogP Values

from ADMET Predictor model of GastroPlus[™] (ADMET) or US EPA EpiSuite

The predicted LogP values from ADMET correlated well with the literature data and were comparable to those predicted by EpiSuite

Accuracy of PK parameter predictions

C	lint	Fraction Unbound in Plasma				
Fold difference from empirical data	Percent of the total compounds *	Percent (%) difference from empirical data	Percent of the total compounds **			
1 to 3	38%	1 to 10	61%			
3 to 10	29%	10 to 30	26%			
10 to 100	29%	> 30	13%			
> 100	7%					
* n=463		** n=441				
Empirical data for Clint and Fup via personal communication (J. Wambaugh, 2015)						

Metabolic clearance and Fup predictions by GastroPlus are quite acceptable:

- 67% of predicted Clint values within 10x of empirical data
- 87% of predicted Fup values within 30% of empirical data

Accuracy of Steady-State Systemic Exposure predictions

Comparison of GastroPlus Prediction Results with Published IVIVE Modeling Results (oral route)

Chemical Name	Reference PK or PBPK derived (Css µM) *	Restrictive hepatic clearance (Css µM) *	GastroPlus Predicted (Css µM)	GastroPlus Predicted with Empirical Clint* and Fup* (Css µM)
2.4-D	9.05-90.05	43.27	64.56	57.95
Cacodylic acid	1.8	3.06	9.53	7.37
Carbaryl	0.03	0.07	1.13	0.47
Fenitrothion	0.03	17.92	0.84	15.7
Lindane	0.46	13.21	7.96	6.68
Parathion	0.17	24.64	1.66	17.28
Perfluorooctane sulfonic acid	19,990	153.23	143.68	155.42
Perfluorooctanoic acid	20,120	53.16	89.57	61.34
Picloram	0.27	57.63	39.27	67.96
Thiabendazole	0.45	13.76	11.76	15.8
Triclosan	2 to 10	1.56	7.67	1.36
Bisphenol A	<0.13	0.35	2.60	2.49

* Data from Wetmore, et al. 2012 (Toxicol Sci 125(1): 157-174)

- Steady state blood level predictions from GastroPlus consistent with those obtained with SimCYP and overall conservative vs. Reference data
- Predicted Css values generally improve with inclusion of measured Clint and Fup

Oral Acute Exposures

The predicted pharmacokinetic values from GastroPlus correlated well with the literature data Cmax: 69% within 3-fold, and 88% within 10-fold of experimental data AUC: 54% within 3-fold, and 85% within 10-fold of experimental data

MB 2.18.16

Inhalation Acute Exposures

The predicted pharmacokinetic values correlated acceptably with the literature data Cmax: 50% within 3-fold, and 63% within 10-fold of experimental data AUC: 50% within 3-fold, and 63% within 10-fold of experimental data - generally over-predicted (conservative)

Dermal Acute Exposures

The predicted pharmacokinetic values correlated acceptably with the literature data Cmax: 44% within 3-fold, and 89% within 10-fold of experimental data - generally over-predicted (conservative)

Methods for High Throughput Exposure assessment Tool (HEAT)

- Determine external exposures for Dow products
 - Using formulation data and validated Occupational or Consumer exposure models
- Pre-define predictions of blood levels across a range of external exposures (0.001-1000 mg/kg)
 - Oral, Inhalation and Dermal routes
 - Select most conservative formulation types and exposure conditions for each route

Trends in Systemic Exposure Predictions with GastroPlus

Bioaccumulation after 28 days oral exposure

Saturation of oral absorption

Dow

Trends in Systemic Exposure Predictions with GastroPlus

- Predicted Total % Fa Solution
- Predicted Total % Fa Powder
- Predicted Pulmonary % Fa Solution
- Predicted Pulmonary % Fa Powder

Trends towards lower uptake of inhaled chemicals through pulmonary tissue - trend enhanced for solid formulations vs. solutions

Selection of Optimal Exposure time for *de novo* Inhalation modeling

Ethylene Glycol Cmax vs. Exposure Time

Selection of Optimal Exposure time for *de novo* Inhalation modeling

Impact of metabolism on systemic bioavailability via inhalation

Time to steady state dependent on metabolic stability of compound:

- isomers with two CYP-metabolizable moieties more rapidly cleared than analogs with one moiety

Conclusions

- GastroPlus has been shown to provide adequate predictions of PhysChem properties, pharmacokinetic parameters and systemic blood levels, compared to literature values and/or other validated QSAR programs
- Predicted systemic blood levels are being generated for a test data set (~ 60 compounds) by the oral, inhalation and dermal exposure routes for the HEAT exposure model
 - Formulation types and exposure scenarios chosen to provide conservative blood level predictions
- Future research work
 - Refine model predictions with empirical Clint and Fup values
 - Note: GastroPlus provides estimates of CYP metabolism only
 - Derive correlations for pulmonary clearance of unmetabolized volatile compounds
- Proper understanding of the benefits and limitations of predictive modeling tools such as GastroPlus[™] will allow for optimum implementation of animal alternatives in novel high throughput safety assessment programs.

Acknowledgements

Fagen Zhang Leah Luna Shubhra Chaudhuri (Charles River) Dan Wilson Barun Bhhatarai (Novartis) **Tyler Auernhammer** Scott Arnold **Amy Beasley Bryce Landenberger** Neha Sunger (West Chester Univ.) Jon Hotchkiss