Predictive Power of PBPK Modeling and *in silico / in vitro - in vivo* Extrapolation Using GastroPlus[™] and ADMET Predictor[™] Software Tools

Grace Fraczkiewicz Simulations Plus, Inc. Lancaster, CA

Outline

- Introduction to GastroPlus mechanistic absorption and PBPK modeling
 - prediction of volume of distribution
 - clearance inputs
 - in vitro in vivo extrapolation
- In silico in vivo extrapolation using ADMET Predictor [™]
 - physicochemical property models
 - pK_a: why is it so critical?
 - intrinsic clearance and metabolism models
- Validation examples
- Conclusions

Simulations Plus Software Products

What's happening in vivo?

Advanced Compartmental Absorption and Transit Model (ACAT™)

Alternative Dosage Routes Mechanistic Models

Pulmonary

Dermal

Oral Cavity

Ocular

St SimulationsPlus SCIENCE + SOFTWARE = SUCCESS

Processes Involved in Oral Absorption

These phenomena:

- are happening simultaneously
- are repeated in each of the compartments of the gastrointestinal tract

PBPKPlus Module

What's Defined in a PBPK Model?

- Each compartment represents a tissue:
- specific volume
- blood perfusion rate
- enzyme/transporter expressions
- volume fractions of lipids & proteins
 - partition coefficient K_p
- Perfusion limited tissues: concentration of chemical in the tissue is K_p*C_{plasma}
- Permeability limited tissue: K_p
 determines distribution of chemical
 between plasma and extracellular
 space, but intracellular concentration
 is determined by carrier-mediated
 transfer of chemical across cellular
 membrane or permeability surface
 area exposed to the plasma

Mechanistic Liver Model

Biliary clearance can be specified as:

•Biliary Clearance Fraction (fraction of liver clearance due to biliary excretion) – same as with Compartmental PK

•An active efflux of drug across canalicular membrane

•A passive diffusion of drug across canalicular membrane

Mechanistic Kidney Model

Perfusion Limited:

CL_{filt} Estimates:

- Fup*GFR
- GFR
- Fraction of Kidney blood flow
- Other

Permeability Limited:

Distribution and Clearance

Steady State Volume of Distribution (Vdss)

 $Vd_{ss} = \sum V_t K_p * (1 - ER) + V_e(E:P) + V_p$ E: P = (R_B - (1 - H_t)) / H_t

$$Kp = Kpu * fup$$

$$Kpu = V_{ew} + \frac{1/X_{[D],iw}}{1/X_{[D],p}} V_{iw} + \left(\frac{P \cdot V_{nlt} + (0.3 \cdot P + 0.7) \cdot V_{pht}}{1/X_{[D],p}}\right) + (Fn + Fa) \cdot \left[\frac{1}{fup} - 1 - \left(\frac{P \cdot V_{nlp} + (0.3 \cdot P + 0.7) \cdot V_{php}}{1/X_{[D],p}}\right)\right] \cdot RAtp + (Fc) \cdot \left(\frac{Ka \cdot [AP]_T ((1/X_{[D],P}) - 1)}{(1/X_{[D],P})}\right)$$

S+ Method (Lukacova): The binding of drug to acidic phospholipids or plasma proteins is given by actual ionization of each drug at physiological pH

- Linear Clearance
 - CL_{int} = intrinsic clearance
- Nonlinear Clearance
 - Michaelis-Menten kinetics

$$CL_{\text{int},u} = \sum_{i=1}^{nEnz} \left[\frac{V_{\text{max}}^{i}}{K_{m}^{i} + C_{t,u}} \right]$$

 $CL_{int,u}$: Unbound intrinsic clearance

 $C_{t,u}$: Unbound tissue drug concentration

Systemic Clearance:

$$CL_{p} = Rbp \cdot CL_{b} = Rbp \cdot Q \left(\frac{CL_{int,u}}{CL_{int,u} + Q \frac{Rbp}{fup}} \right)$$

 CL_p , CL_b : plasma, blood clearance

Q: Tissue blood flow

Rbp : Blood/plasma concentration ratio *fup* : fraction unbound in plasma

Predicting Kp: Rodgers vs. Lukacova

IS

Predicting Kps

14

Lukacova – AAPS Annual Meeting 2008

Predicting Kps

Role of Fraction Unbound in Plasma in Calculations of Tissue: Plasma Partition Coefficients

(1) Simulations Plas. Inc. Lanc

urpose: Previous Investigations have shown that the Rodgers and Rodgers 2007) for prediction of tissue:plasma partition coefficient ood prediction for compounds with low to moderate lipophilicity, nen applied to highly lipophilic compounds. The reasons for the u predictions for lipophilic compounds were investigated.

Inthods: The effects on errors in predictions of experimental measus, Ka, Fup and Rbp on the accuracy of Kp prediction were evaluated, as on prediction of Kps, and the resultant volume of distribution, un Rowland method for highly lipophilic compounds. The study retentiod tends to overpredict Kps especially for lipophilic compounds arily high measured fraction unbound in plasma (Fup). This coulability of current experimental techniques to capture the possible to tasma lipids in Fup measurements. We have derived an equation w operimental Fup for binding to plasma lipids, assuming that the exp at account experimentage unioning to plasma proteins posening, and un partitioning to bits ma lipids.

Results: While the tethod for prediction of Kps as published Rowland provides good overall predictions for compounds with Ipophilicity, it tends to gross, overpredict Kps for highly lipophilic or corrected Fup in the Kp predict as resulted in significant improvems Kps and subsequent estimates of Varure of distribution.

Conclusions: Recognizing the possion limitations of experiment: capturing all the aspects of drug binding to sema components help approach that provides better estimates of thue'plasma partition subsequently better estimates of volume of outrobution. This r predictions of drug exposure using only in vitro and in citizo data with using different methods of Kp predictions for different data us of comp

Assuming that

 experimental F_{up} (by equilibrium dialysis) is a measure of drug binding only to protein

(2) logP can be used as an estimate for the drug partitioning to plasma lipids, the "corrected" fraction unbound in plasma can be calculated as:

$$f_{up} = \frac{10^{\log \delta_{un}} \left(\frac{V_{upd}}{V_{under}}\right) + 1 + \frac{1 - F_{upsep}}{F_{upsep}}$$

where $V_{\rm garg}$ is the volume fraction of total neutral lipid and phospholipid in plasma, $V_{\rm garge}$ is the volume fraction of water in plasma, $logP_{\rm garge}$ is cotanol/water partition coefficient, $F_{\rm garge}$ is the experimentally measured value of fraction unbound in plasma, and $T_{\rm e}$ is the adjusted fraction unbound in plasma which will be used in Kp calculators.

Purpose: Previous investigations have shown that the Rodgers and Rowland method [Rodgers 2007] for prediction of tissue:plasma partition coefficients (Kps) provides good prediction for compounds with low to moderate lipophilicity, <u>but it often fails</u> when applied to highly lipophilic compounds. The reasons for the unreasonably high Kp predictions for lipophilic compounds were investigated.

Methods: The effects on errors in predictions of experimental measurements of logP, pKa, Fup and Rbp on the accuracy of Kp prediction were evaluated. The main focus was on prediction of Kps, and the resultant volume of distribution, using the Rodgers & Rowland method for highly lipophilic compounds. The study revealed that this method tends to overpredict Kps especially for lipophilic compounds which also have fairly high measured fraction unbound in plasma (Fup). This could be due to the inability of current experimental techniques to capture the possible binding of drug to plasma lipids in Fup measurements. We have derived an equation which corrects the experimental Fup for binding to plasma lipids, assuming that the experimental Fup is

Dependency of volume of distribution (Vss) on Fup and logP using the "experimental" F_{ip} directly in Kp calculations and with adjusting the Fup for binding to plasma lipids. F_{ip} [%] on the V-axis shows the "experimental" F_{ip} in all graphs. The V_a values were calculated for model compounds (neutral with blood-to-plasma-ratio = 1 on the left and strong base with Pixa = 8.5 and blood-to-plasma-ratio = 1 on the left and strong base with

For neutral compound, the V_m is increasing with increasing experimental F_{ip} and increasing logP, with logP having larger impact. Adjusting F_{ip} for possible binding to plasma lipids results in lower V_m values reaching plateau and not increasing significantly with further increase in logP.

However, the $F_{\rm sp}$ adjustment does not automatically result in lower $V_{\rm sp}$ for all compounds. For a strong base (base pKa = 8.5 and blood-to-plasma-ratio = 1), $V_{\rm sp}$ is increasing with increasing logP but shows much less uniform dependency on $F_{\rm sp}$ $V_{\rm sp}$ decreases with increasing $F_{\rm sp}$ for compounds with low lipophilicity but increases with increasing $F_{\rm sp}$ for compounds. Adjustment of $F_{\rm sp}$ for binding to plasma lipids again results in plateau in $V_{\rm sp}$ for highly lipophilic compounds, but for moderately lipophilic compounds, the $F_{\rm sp}$ adjustment may result in increase in predicted Kps and subsequently $V_{\rm sp}$. Kps. Azithromycin represents compounds where the F_{up} adjustment results in increases of calculated Kps.

- ^-	Mofarotane" Fold error of Kp prediction		Glycyrrf	hetinic Ackd	Azithromycin Kp			
1			Fold error o	f Kp prediction				
	with Exp Fup	with Adjusted Fup	with Exp Fup	with Adjusted Fup	Experimental (Sheped 1990)	Calc with Exp Fup	Calc with Adjusted Fug	
Adpose	>1000	11. 4 11	>10000	>10		1.1		
Brain	500	2	>10000	5	1 287			
Gut	500	2	>5000	5				
Heart	100	3	>1000	3	1.11.1			
Kidney	>100	3	>1000	2	317.5	2.58	26.48	
Liver	>100	3	>1000	2	442.5	3.05	24.03	
Lung	>100	>5	>1000	2	205	2.19	20.59	
Muscle	>100	2	>1000	2	10 1 1 11			
Repro Org	×500	3	1.7		7111///			
Skin	>100	/3/	>1000	3 /	11////			
Science .	100	1 26	>1000	3 //	1807.6	2.80	18.78	

* Experimental Kp values are from unpublished Roche measurements

References:

Rodgers T., Rowland M.; J Pharm Sci 2007, 96: 3151-3152 Rodgers T., Rowland M.; J Pharm Sci 2007, 96: 3153-3154 Shepard, R. M. Faikner, F. G.; J Antimicrob Chemother 1990, 25 (suppl. A): 49-60

Predicting Kps Adjusted Fup

- Highly lipophilic drugs can exhibit significant binding to plasma lipids
- Binding to plasma lipids may not be captured by standard equilibrium dialysis measurement of Fup

$$f_{up} = \frac{1}{10^{\log D_{o/w}} \left(\frac{V_{lipid}}{V_{water}}\right) + 1 + \frac{1 - F_{up, exp}}{F_{up, exp}}}$$

Assumptions:

- 1. $\log D_{o/w}$ can be used as an estimate for the drug partitioning into plasma lipids
- 2. Experimental F_{up} is a measure of drug binding ONLY to plasma albumin

IVIVE in GastroPlus

🚰 Metabolism and Transporter Units Converter: GastroPlus conversion factors 🛛 🗖 💻 🏧						
Convert CLint	Convert Km and Vmax	Ì	Convert T1/2	Т Т	ransporters	
In vitro assay type: In vitro fraction unbound: • Microsomes • Fu calc (Austin) • Fu calc (Austin) • Fu calc (Hallifax) • User defined 61.821 % • In vitro value is unbound					•	
Hide Advanced Options Body Weight 70 mg MP/g Tiss 38	Tissue Weight 1433.9 drug Mwt 325.77	nzyme — A4 Tissue [Transfer Unbou	nd in vivo CLint protein 111 Physiology 🖪	to Liver Mwt 57299	
Micros Con	ic in vitro (mg/ml) 0.5	Calcu	late Non-Saturable Vmax	Km,u	20 mg/L	
Save Current Settings as Def Restore GastroPlus Setting	aults js					
					Close	

Obtaining Necessary Physicochemical/CYP Metabolism Properties from Chemical Structure

Structure-Based Predictions

Predictive Models

St Simulations Plus

Why are pK_as so important?

(red mesh) and scores

SCIENCE + SOFTWARE = SUCCESS

Summary of CYP Enzyme Predictions

	Inhibitor	Substrate	Km	Ki	Vmax	CLint	Sites (if substr)
CYP1A2	Х	Х	Х		Х	Х	Х
CYP2A6		Х					Х
CYP2B6		Х					Х
CYP2C8		Х					Х
CYP2C9	Х	Х	Х		Х	Х	Х
CYP2C19	Х	Х	Х		Х	Х	Х
CYP2D6	Х	Х	Х		Х	Х	Х
CYP2E1		Х					Х
CYP3A4	Х	Х	Х		Х	Х	Х
3A4_mid	Х			Х			
3A4_tes	Х			Х			

Validation Examples

Validation: in vitro – in vivo extrapolation

Chaminal	AUC _{0-inf} (µg-h/ml)		Ratio	Predicted	Potoronco	
Cnemical	In vivo	Predicted		F %	Kererence	
Erythromycin	8.43	7.48	0.9	37	Kroboth et al., Antimocrob Agents Ch, 21 (1982)	
Acetaminophen	91.23	40.17	0.4	79	Critchley et al., J Clin Pharm Ther, 30 (2005)	
6-Propyl-2-thiouracil	21.06	27.13	1.3	90	Kabanda et al., J Pharm Pharmcol, 48 (1996)	
Candoxatril	0.9	5.74	6.4	58	Kaye et al., Xenobiotica, 27 (1997)	
Flutamide	5.98	8.94	1.5	52	Anjum et al., Br J Clin Pharmacol, 47 (1999)	
Triamcinolone	0.64	0.55	0.9	76	Hochhaus et al., Pharmaceut Res, 7 (1990)	
Rifampicin	40.79	33.77	0.8	50	Rafiq et al., Int J Agric Biol, 12 (2010)	
Sulfasalazine	49.76	450.8	9	56	Gu et al., <i>J Chromatogr B</i> , 879 (2011)	
5,5-Diphenylhydantoin	135.56	67.25	0.5	94	Brien et al., Europ J Clin Pharmacol, 9 (1975)	
Coumarin	0.007	0.183	25.7	64	Lamiable et al., J Chromatogr, 620 (1993)	
Diphenhydramine hydrochloride	0.94	16.42	17.5	100	Toothaker et al., Biopharm Drug Dispos, 21 (2000)	
Lovastatin	0.065	7.1	109	93	Kothare et al., Int J Clin Pharm Th, 45 (2007)	
Carbaryl	0.15	0.51	3.4	37	May et al., J Pharmacol Exp Ther, 262 (1992)	
Triabendazole	17.07	46.75	2.7	91	Bapiro et al., Eur J Clin Pharmacol, 61 (2005)	
2,4-D	423.25	1209.5	2.9	100	Sauerhoff et al., <i>Toxicology</i> , 8 (1977)	
Oxytetracycline dihydrate	14.29	97.2	6.8	50	Green et al., Europ J Clin Pharmacol, 10 (1976)	
Picloram	0.97	166.66	171	98	Nolan et al., Toxicol Appl Pharm, 76 (1984)	
Triclosan	1.41	0.76	0.5	96	Sandborgh-Englund et al., <i>J Toxicol Environ Health A</i> , 69 (2006)	

Ref: Haiying Zhou et. al., Using Physiologically Based Pharmacokinetic Modeling for *in vitro – in vivo* Extrapolation to Predict Chemical Exposure, Poster presented here at the IVIVE workshop.

Validation: *in silico – in vivo* extrapolation

PREDICTION OF ORAL BIOAVAILABILITY in silico Michael Lawless, John DiBella, Michael B. Bolger, Robert D. Clark, Eva Huehn, Marvin Waldman, Jinhua Zhang, and Viera Lukacova

Simulations Plus, Inc. (www.simulations-plus.com)

Abstract

- A database of 62 drugs including oral bioavailability (P%) and dose was con All compounds' reported major dearance pathways (MCP) were CYP-mediated¹
 For 43 drugs with more than one reported value of F%, the average experimental
- Reported F% values² varied from 3% (fluphenazine) to 99% (diazepam, galantamine
- Reported PS values/ varied from 3% (fluphenazins) to 9% (diazeptan, gatantunue, giimeptiria, dinomethacir, and tamasolosin), with an average of 6% for 5% (GSAR) model predicted by integrating quantitative structure activity relationship (GSAR) model predictions¹ and physiologically based pharmacchinetic (PTRF) simulations
 A 35-year-old American male physiology was use for all PEPK simulations
 All molecular were predicted to be substrates of the CYT associated with their XCTP
 In 42 of the 62 molecules, the CYT isoform with highest predicted intrinsic clearance
- (CL...) was the same as the MCP erall, 58% of the molecules were predicted within 1.5-fold of their reported P%
- Scaling V_{max} by the CYP substrate model's confidence estimate resulted in fewer underpredic

Figure 1 - Examples of drugs in the data set along with their dose. F% and MCP.

Methodology

Figure 2 - CYP metabolism models for 5 CYP isoforms (1A2, 2C9, 2C19, 2D6, and 3A4). The first model predicts whether a molecule is a substrate for each CYP isoform These predictions include confidence Next, sites of metabolism an predicted for compounds that are predicted as substrates. Finally, kinetic parameters are redicted and metabolites are denicted.

QSAR Model	Description
S+Sw	aqueous solubility
S+Sp	aqueous solubility at specified pH
S+FaSSGF	solubility in simulated fasted stated gastric fluid
S+FaSSIF	solubility in simulated fasted state intestinal fluid
S+FeSSIF	solubility in simulated fed state intestinal fluid
S+logD	logD at specified pH
S+pKa	pK, (single or multiple)
S+Peff	effective human jejunal permeability
S+PrUnbnd	percent unbound to plasma proteins
S+RBP	blood-to-plasma concentration ratio
DiffCoef*	molecular diffusion coefficient in water
A COMPANY AND A COMPANY	Manual Manual Annual

MET_XXX_Vmax Michaelis-Menten Vmax constant (5 CYP isoforms)

Figure 3^7 – Orally dosed drugs typically dissolve in the stomach and transit into the intestine, where they can be absorbed into the gut wall. Fa% (fraction absorbed) is the fraction of dose that is absorbed into the apical membrane of the gut epithelium. CYP enzymes metabolize some compounds in the enterocytes. FDp% is the fraction/percent of dose that makes it to the portal vein. P% is the fraction/percent of dose that enters systemic circulation. Fa%, FDp%, and P% were predicted by our GastroPlus™ PBPK simulations.

Figure 4 – Example of metabolite predictions for diltiazem. It is predicted to be a substrate of CYP 2C9, 2C19, 2D6, and 3A4 with confidence estimates shown in parenthesis. Three sites of metabolism are predicted and the metabolites are displayed. The table contains the predicted intrinsic clearances and the fraction/percent metabolized (fm%). CYP 3A4 is responsible for the majority of metabolism based on the predicted CL_{mer}.

The dotted lines represent 1.5-fold errors. On the right-hand graph, $V_{\rm max}$ was scaled by the confidence estimate from the CYP substrate model (i.e., multiplied $V_{\rm max}$) as Confidence%/100), reducing severe underpredictions to avoid early rejection of good andiclases.

Figure 6 - Graph of cumulative fraction and fold error. P% was predicted to be within 1.5-fold of the reported value for 58% of the compounds. For 46 compounds, the reported F% either spanned a range (e.g., 80-90%) or included a standard deviation (e.g., 80 ± 15%). The area of the bubble is proportional to the expected measurement uncertainty. The P% of lovastatin is difficult to simulate due to opening and dosing of the lactone ring. Tamsolusin has the highest fold error. NOTE: PBPK simulations using in tritro microsomal K_m and V_{max} values also resulted in large difference between reported and predicted F%. Propranolol was incorrectly predicted to be metabolized by 1A2; only including metabolism by 2D6 gives a correct P% prediction

Conclusions

A dataset of 62 drugs along with dosage and P% was compiled. Each compound's reported MCP was CYP-mediated. Fa%, FDp%, and F% were estimated with PBPK simulations using physicochemical and CYP kinetic parameters predicted entirely from QSAR models. The CYF isoform associated with the MCP was correctly predicted in 42 of the 62 molecules. Additionally, 58% of the predicted oral bioavailability values were within 1.5-fold of the observed oral bioavailability. Scaling V_{max} by confidence estimates from our CYP substrate model reduced the number of underpredictions

References

Toshimoto K et al, Drug Metabol. Disp. Fast Forward. Published on August 14, 2014 ² Thummel KE et al., In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman's the pharmacological basis of therapeutics, 12th ed. New York: McGraw-Hill: 2011 ⁸ ADMET PredictorTM version 7.2, Simulations Plus, Inc., Lancaster, CA 95354 USA. GastroPlusTM version 9.0, Simulations Plus, Inc., Lancaster, CA 95354 USA. ⁶ Clark RD et al., J. Chemigium 2014, 6:34.
 ⁶ Hayduk W and Laudie H, American Institute of Chemical Engineers J. 1974, 20:611.

Modified from van de Waterbeemd H and Gifford E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192:204

√Simulations Plus⊷ COGNIGEN

29

Lawless et al. (2015) ISSX Annual Meeting Using QSAR & PBPK to predict human F%: 70% of compounds predicted within 2-fold

SimulationsPlus

SCIENCE + SOFTWARE = SUCCES

Prediction of F%

- A database of 62 drugs including oral bioavailability (F%) and dose was constructed
 - All compounds' reported major clearance pathways (MCP) were CYP-mediated¹
 - For 43 drugs with more than one reported value of F%, the average experimental CV% was 29%
- Reported F% values² varied from 3% (fluphenazine) to 99% (diazepam, galantamine, glimepiride, indomethacin, and tamsulosin), with an average of 60%
- F% was predicted by integrating quantitative structure activity relationship (QSAR) model predictions³ and physiologically based pharmacokinetic (PBPK) simulations⁴
 - A 35-year-old American male physiology was use for all PBPK simulations
- All molecules were predicted to be substrates of the CYP associated with their MCP
- In 42 of the 62 molecules, the CYP isoform with highest predicted intrinsic clearance (CL_{int}) was the same as the MCP
- Overall, 68% of the molecules were predicted within 2-fold of their reported F%

¹Toshimoto K et al, *Drug Metabol. Disp.* Fast Forward. Published on August 14, 2014.

² Thummel KE et al., In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman's the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. Some F% values were from drug data sheet.

³ ADMET PredictorTM version 7.2, Simulations Plus, Inc., Lancaster, CA 95354 USA.

⁴GastroPlusTM version 9.0, Simulations Plus, Inc., Lancaster, CA 95354 USA.

Predicting drug bioavailability using PBPK modeling and Global Sensitivity Analysis to identify sensitive parameters

SimulationsPlus

SCIENCE + SOFTWARE = SUCCES

Pankaj R. Daga¹, Michael B. Bolger², Ian S. Haworth³, Robert D. Clark², and Eric Martin^{*1}

¹Novartis Institute of Biomedical Research, Emeryville, CA 94608, United States, ²Simulations Plus Inc., Lancaster, CA 93534, United States, ³Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, United States

Daga et al. (2015) Gordon Research Conf.

Prediction of F% Using *in silico* Physicochemical Properties and *in vitro*, Predicted or Fitted Clearance - Case Study 1

• 49 Compounds: Single Med Chem series reported by Merck in various papers

- The low accuracy of the 1st approach was due to significant renal clearance that this series of compounds undergoes
- Global QSAR model built on a wide variety of compounds was not accurate enough for this series of compounds

32 Daga et al. (2015) Gordon Research Conf.

Prediction of F% Using *in silico* Physicochemical Properties and *in vitro*, Predicted or Fitted Clearance - Case Study 2

81 Compounds: Single Med Chem series reported by Astra-Zeneca in 4 publications

 These simulations suggest that this class of compounds undergo extensive hepatic clearance and that extrahepatic clearance mechanisms are either absent or minimal

SimulationsPlus

SCIENCE + SOFTWARE = SUCCESS

- Daga et al. (2015) Gordon Research Conf.
- 33

Prediction of F% Using *in silico* as well as Experimental Physicochemical Properties and *in vitro*, Predicted, or Fitted Clearance - Case Study 3

- 61 compounds : Single Med-Chem series with experimental data
 - <u>Physicochemical prop & in vitro data</u>: (Solubility, Caco2 permeability, Plasma Protein binding, CL_{int})
 - <u>RAT PK data:</u> (%F, AUC, C_{max}, T_{max}, CL_{plasma}, V_{ss})

 These simulations suggest that purely in silico inputs can provide s results to the experimentally obtained values

34 Daga et al. (2015) Gordon Research Conf.

Conclusions

- Quality of predictions produced by Mechanistic Absorption and PBPK modeling greatly depends on the input parameters and the routes of clearance that any given compound is subjected to *in vivo*.
- In general, volume of distribution is predicted well with the default GastroPlus PBPK methodology if the provided physicochemical and biopharmaceutical properties are correct. The main reasons for underprediction of Vd are: specific binding to some tissues, lysosomal trapping, and active transport (influx and efflux) into the tissue(s).
- Plasma concentrations and F% are typically predicted within 10-fold for the majority of chemicals. Compounds that undergo only passive renal clearance and/or hepatic CYP clearance can be predicted within 2-fold – even with only *in silico* inputs. Other routes of clearance such as: biliary in liver and transporter-based (in liver or kidney) are difficult to predict and are the major reasons for underpredicting clearance when *in vitro-in vivo* extrapolation is used.

Acknowledgments

- Co-authors:
- Haiying Zhou
- Michael Lawless
- Pankaj R. Daga
- Michael B. Bolger

- Contributors:
- Viera Lukacova
- Robert Fraczkiewicz
- Marvin Waldman
- Robert D. Clark
- Jinhua Zhang
- John DiBella
- Walter Woltosz

Additional Slides

Mechanisms: Clearance

Relationship between CL_{int} and $t_{1/2}$:

$$CL_{\text{int}} = \frac{0.693}{t_{1/2}} * \frac{\text{ml incubation}}{\text{mg microsomes}} * \frac{38 \text{ mg microsomes}}{\text{g liver}} * \frac{x \text{ g liver}}{\text{kg b.w.}}$$

IVIVE

- Predict metabolic clearance *in vivo* from *in vitro* measurements (microsomes, hepatocytes, recombinant systems)
- Convert Vmax measured in rate of metabolism per 'unit amount of enzyme' to rate of metabolism in the entire tissue (liver, gut, etc.)
- *in vitro* 'unit amount of enzyme' is given by the *in vitro* assay:
 - mg of microsomal protein (microsomal assay)
 - 1 million cells (hepatocyte assay)
 - pmol of enzyme (recombinant enzymes)

To obtain *in vivo* Vmax in the entire tissue:

Model performance... CYP2D6

Model	Data Sets	Negatives	Positives	Total	Correct	Concordance	Sensitivity	Specificity
CVP 142 Substr	Training	799	410	1209	988	81.7%	79.8%	82.7%
CTP_TA2_Subsu	Test	138	75	213	170	79.8%	80.0%	79.7%
CVP 246 Substr	Training	479	154	633	516	81.5%	80.5%	81.8%
CTP_2A0_Subsu	Test	89	23	112	89	79.5%	78.3%	79.8%
CVP 2B6 Substr	Training	470	200	670	551	82.2%	80.5%	83.0%
CTP_2D0_3ubsu	Test	87	31	118	97	82.2%	80.6%	82.8%
CVP 2C8 Substr	Training	461	199	660	510	77.3%	72.9%	79.2%
CTP_200_Subsu	Test	83	34	117	90	76.9%	73.5%	78.3%
CVB 200 Substr	Training	838	333	1171	917	78.3%	72.7%	80.5%
	Test	154	53	207	161	77.8%	71.7%	79.9%
CVP 2C19 Substr	Training	859	283	1142	934	81.8%	76.0%	83.7%
	Test	107	40	202	100	10.1%	70.0%	10.4%
CVP 2D6 Substr	Training	822	416	1238	1032	83.4%	81.0%	84.5%
CTP_2D0_Subsu	Test	142	76	218	174	79.8%	80.3%	79.6%
	Training	472	213	695	573	93 6%	70.9%	95 4%
CTP_2E1_Subst	Test	74	47	121	109	90.1%	80.9%	95.9%
CVP 3A4 Substr	Training	416	971	1387	1165	84.0%	85.3%	81.0%
CTF_3A4_Subsu	Test	79	166	245	202	82.4%	81.3%	84.8%

Define the <u>physicochemical</u> properties for your compounds	Define the initial <u>formulation</u> conditions for your compounds	Define the <u>pharmacokinetic model</u> (compartmental or PBPK) for your compounds, along with the Fu,plasma and blood:plasma concentration ratio
Select experimental properies to be loaded into database in for data that are not being predicted by ADMETPredictor ar if these are correct and mike additional corrections if desire If value in selected column is missing (or outside allowed rar solubility or logD are replated with predicted values, corresp	nstead (or in addition) properties predicted by AD nd already made a set stion. The inputs that were s ad. nge) for some compounds, it will be automatically fil ponding pH values will be filled with predictions as Name	METPredictor. GastroPlus had detected possible inputs selected by GastroPlus are marked in red. Please check led in with predicted or default value. If values for well.
Physico-Chemical Properties Mwt (g/mol) Use Predicted Dw (cm ² /s x 10 ⁵) Use Predicted logD Use Predicted pH for logD Use Predicted As Sol (ma/ml) Use Predicted	Formulation Parameters Dosage Form IR: Tablet Dose (mg) Dose_GP Oose Volume (mL) <default> Part Radius (um) <default> Particle SD (um)</default></default>	Pharmacokinetics & Physiology PK Model Compartmental Gut Physiology Human - Physiological - Fasted Fup (%) Use Predicted Rbp Use Predicted Vc (L/kg) Use Predicted
PH for Aq Sol Use Predicted ▼ FaSSGF (mg/mL) Use Predicted ▼ FaSSIF (mg/mL) Use Predicted ▼ FaSSIF (mg/mL) Use Predicted ▼ FeSSIF (mg/mL) Use Predicted ▼ Interf Tens (J/m ² 2) Use Predicted ▼ Solubility Factor Use Predicted ▼ Peff (cm/s x 10 ⁴ 4) Use Predicted (S+Peff) ▼ Peff Source Human ▼	Particle Bins <default>1 Particle Bins <default>1 Dbserved Properties Fa (%) Fa_GP FDp (%) <none> Fb (%) Fb_GP Cmax (ug/mL) <none> Tmax (h) <none> AUC (ng-h/mL) <none> Tone> Tmax (h) <none> Tmax (h) <none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></none></default></default>	Llearance IVIVE Settings Renal CLfilt (unknown> 0) Value IVIVE Settings Value Units Enzyme Vmax Use Predicted (all rCYP) Vmax Use Predicted (all rCYP) Immol/L IVIVE CL NONE in vitro Fu (%) Input is UNBOUND
Molecular Hadius (A) Use Predicted ↓ Turn ON Paracellular Permeability Pcornea (cm/s) Use Predicted Define how the <u>cl</u>	Set 'No Batch Updates' for these records	Structure © Draw and Display © Draw and Hide O Do Not Draw Your compounds:

- a. Include renal filtration clearance?
- b. Use Vmax and Km for CYP enzymes OR intrinsic clearance **not both**!

c. If Vmax and Km are selected, use HLM data to calculate 3A4 Vmax and Km, or rCYP data (rCYP data is used for all other CYPs)?

