Concepts of non-linear pharmacokinetics and KMD

Alan R Boobis
Imperial College London
a.boobis@imperial.ac.uk
Disclosure Statement

• Member of several science advisory boards (public and private sector) [non-remunerated] (e.g. ILSI, HESI, Owlstone Medical, Cosmetics Europe LRSS, Swiss Centre for Applied Human Toxicology, MSU Center for Research on Ingredient Safety, A*STAR Food and Chemical Safety Programme Singapore)

• Member/chair of several national and international scientific advisory committees (UK COT, UK COMEAP, JMPR, JECFA, TobReg, ISO TC126 WG10 Intense Smoking Regime)

• I have no financial interests in the subject matter of the session
Risk characterization

Hazard ID
Hazard characterisation

Exposure assessment

Uncertainty factor

HBGV (e.g. ADI)
HBGV = POD/UF

Risk characterisation (Exposure cf HBGV)

MOE = POD/Exposure

MOE = POD/Exposure

HBGV (e.g. ADI)
HBGV = POD/UF
Bioavailability

Solubility

Permeation & pre-systemic metabolism

Yu, 1999

External dose → Bioaccessible dose → Bioavailable dose
Dose-dependency of systemic exposure

<table>
<thead>
<tr>
<th>Species</th>
<th>Durat.</th>
<th>Dose (mg/kg)</th>
<th>Plasma concentration (µg/ml)</th>
<th>AUC(0-24) (µg·h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Gavage</td>
<td>2 Week</td>
<td>500</td>
<td>13.5</td>
<td>9.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
<td>27.6</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td>47.4</td>
<td>40.7</td>
</tr>
<tr>
<td>Diet</td>
<td></td>
<td>500</td>
<td>11.5</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1250</td>
<td>25.9</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td>50.7</td>
<td>32.4</td>
</tr>
</tbody>
</table>

Fractional absorption independent of dose

Fractional absorption dependent on dose
Absorption, distribution, metabolism, excretion (ADME) determine exposure

- Absorption
- Distribution
- Metabolism
- Excretion
Human drug transporters

Giacomini & Huang (2013)
Xenobiotic biotransformation

- Specificity
- Maximum rate (V_{max})
- Affinity (K_m)

Yeung et al, 2013
Kinetics of metabolism

Rate of metabolism = \(\frac{V_{\text{max}} \times C}{K_m + C} \)

When \(C \ll K_m \)

Rate of metabolism \(\approx \frac{V_{\text{max}} \times C}{K_m} \)

i.e. Rate of metabolism \(\propto C \)

When \(C > K_m \)

Rate of metabolism \(\approx \frac{V_{\text{max}} \times C}{C} \)

i.e. Rate of metabolism \(\rightarrow V_{\text{max}} \)

From Winter & Tozer, 1986
Normal vs. saturating kinetics

A) Normal kinetics

B) Saturating kinetics

Plasma concentration (µmol/l)

Days

Therapeutic range

Dose (units = µmol/kg)
Effects of furafylline on caffeine kinetics

Furafylline (90 mg p.o.)
Point of departure

Hazard ID
Hazard characterisation

Exposure assessment

Uncertainty factor

HBGV (e.g., ADI)
HBGV = POD/UF

Risk characterisation
(Exposure cf HBGV)

MOE = POD/Exposure

POD

Exposure

Risk characterisation

HBGV

BMDL

BMDU

BMR = 5%

Dose

NOAEL

LOAEL
Major and minor routes of elimination

\[\text{Cl} = \text{Cl}_R + \text{Cl}_{m1} + \text{Cl}_{m2} + \text{Cl}_{m3} + \text{Cl}_{\text{other}} \]

Propranolol and metoprolol are both cleared > 90% by CYP-dependent oxidation.

Parent
- Metabolite 1
- Metabolite 2
- Metabolite 3
- Renal
- Other

Parent \rightarrow Metabolite 1 \rightarrow Metabolite 1 conj

Plasma conc (ng/ml)

Data from Tucker, Lennard, Wood et al
Acetaminophen hepatotoxicity

Acetaminophen \rightarrow Oxidation of cellular constituents \rightarrow Loss of cellular functions \rightarrow GSH depletion \rightarrow Oxidative damage \rightarrow GSH conjugate \rightarrow Excretion

Acetaminophen \rightarrow GSH-reductase \rightarrow GSH conjugate \rightarrow Excretion

Acetaminophen \rightarrow UGT, SULT \rightarrow Sulphate and glucuronide conjugates

Acetaminophen \rightarrow P450 \rightarrow Protein arylation \rightarrow TOXICITY

Acetaminophen \rightarrow HNCOCH$_3$ \rightarrow OH \rightarrow NCOCH$_3$ \rightarrow NABQI \rightarrow GSH \rightarrow GSSG \rightarrow 2GSH \rightarrow GSH reductase \rightarrow 2GSH \rightarrow GSH \rightarrow GSH conjugate \rightarrow Excretion \rightarrow TOXICITY
GSH depletion and acetaminophen toxicity

Data of Gillette, Mitchell, et al
Quantitative Adverse Outcome Pathway (AOP)

Dose-MIE (KE1)

Exposure

KE1-KE2
KE2-KE3
KE3-AO

ADME/TK
KE1
KE2
KE3
Adverse outcome
Conclusions

• The maximum dose used in toxicity testing is often many orders of magnitude greater than worst-case human exposure

• Limited solubility and/or saturation of processes of absorption, distribution, metabolism and excretion can lead to marked non-linearity between dose and plasma/active-site concentration

• This confounds interpretation of dose-effect relationships and extrapolation to human relevant exposures; hence, substantial over- or under-estimation of risk to exposed populations is possible

• Kinetic considerations are therefore essential in both study design and data interpretation