Concepts of non-linear pharmacokinetics and KMD

Alan R Boobis Imperial College London a.boobis@imperial.ac.uk

NICEATM, US EPA OPP & HESI Kinetically-Derived Maximum Dose (KMD) Workshop 30 September 2020

Disclosure Statement

- Member of several science advisory boards (public and private sector) [non-remunerated] (e.g. ILSI, HESI, Owlstone Medical, Cosmetics Europe LRSS, Swiss Centre for Applied Human Toxicology, MSU Center for Research on Ingredient Safety, A*STAR Food and Chemical Safety Programme Singapore)
- Member/chair of several national and international scientific advisory committees (UK COT, UK COMEAP, JMPR, JECFA, TobReg, ISO TC126 WG10 Intense Smoking Regime)
- I have no financial interests in the subject matter of the session

Risk characterization

Bioavailability

Dose-dependency of systemic exposure

Fractional absorption independent of dose

Species	Durat.	Dose (mg/kg)	Plasma concentration (μg/ml)		AUC(0-24) (μg·h/ml)	
			Male	Female	Male	Female
Rat	2 Week	Gavage				
		500	13.5	9.92	120	102
		1250	27.6	25.2	332	334
		2500	47.4	40.7	626	602
		Diet				
		500	11.5	10.7	199	181
		1250	25.9	19.0	491	336
		2500	50.7	32.4	921	606

Fractional absorption dependent on dose

Absorption, distribution, metabolism, excretion (ADME) determine exposure

©1994 Encyclopaedia Britannica, Inc.

MRP4

Xenobiotic biotransformation

Kinetics of metabolism

Normal vs. saturating kinetics

Effects of furafylline on caffeine kinetics

11

Point of departure

Major and minor routes of elimination

Propranolol and metoprolol are both cleared > 90% by CYP-dependent oxidation

$$CI = CI_{R} + CI_{m1} + CI_{m2} + CI_{m3} + CI_{other}$$

Data from Tucker, Lennard, Wood et al

Acetaminophen hepatotoxicity

GSH depletion and acetaminophen toxicity

Data of Gillette, Mitchell, et al

Quantitative Adverse Outcome Pathway (AOP)

Conclusions

- The maximum dose used in toxicity testing is often many orders of magnitude greater than worst-case human exposure
- Limited solubility and/or saturation of processes of absorption, distribution, metabolism and excretion can lead to marked non-linearity between dose and plasma/active-site concentration
- This confounds interpretation of dose-effect relationships and extrapolation to human relevant exposures; hence, substantial over- or under-estimation of risk to exposed populations is possible
- Kinetic considerations are therefore essential in both study design and data interpretation