Implications of non-linear PK in toxicity testing and interpretation of dose response data

Salil Pendse M.S.

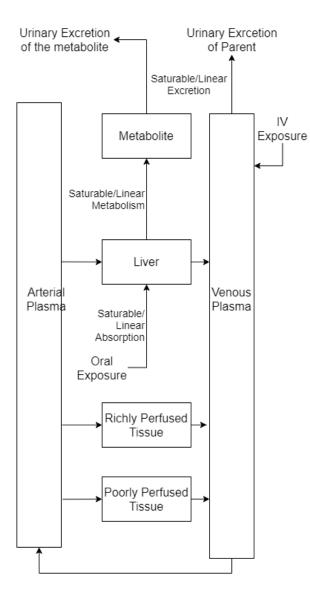
Nuventra, Inc.

Symposium Webinar

Opportunities and Challenges in Using the Kinetically Derived Maximum Dose Concept to Refine Risk Assessment September 30th, 2020

Understanding how nonlinear kinetics influences external-internal dose relationship

- Many kinetic processes involve enzyme or carrier-mediated systems, and these processes may become saturated at high doses, resulting in nonlinear external-internal dose relationship
- The nonlinear external-internal dose relationship may be illustrated with a curve that has an inflection point, which is considered a KMD, or a smooth curve without an inflection point
- To better define a KMD, we need to better understand the external-internal dose relationship that reflects saturable kinetics


How we decided to address this issue

- Create a PBPK model with saturable kinetic processes
- 8 chemicals with different excretion, metabolism and absorption characteristics, based on realistic values
- Only one metabolite is generated from the parent compound
- The toxic moiety may be the parent only, the metabolite only, or both
 - For all scenarios, the AUCs of parent, metabolite, and both will be plotted against external dose to understand how internal doses of potential toxic moiety change with increasing external doses
- Toxic response is assumed linear with AUC of toxic moiety

Modeling platform

- PLETHEM open source, customizable
- Rat model for this case study
- 3-compartment model liver, slowly perfused tissues, rapidly perfused tissues
- Flow-limited model
- Infusion and oral routes of exposure
- Model is created using MCSIM and then integrated within a shiny interface for simulation
- Model is also coded in Magnolia for QA check
- Model simulated for 2160 h with daily oral dosing or 24 h IV infusion

Minimal PBPK model used in the case studies

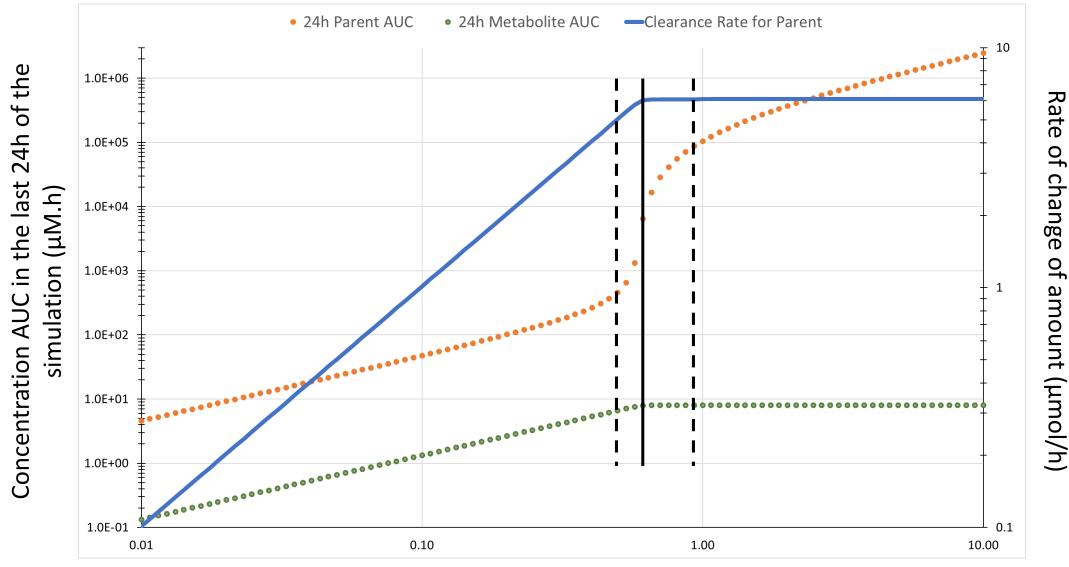
PLETHEM interface for running the model

KMD Modeling Ca	ase Study	*	Setup	ወ											
	Chemical	Chemical and Physiology Absorption Metabolism Parameters U			Urin	Jrinary Clearance Parameters Simulation Setup									
		Select Chemical Chemical A				Select Physiology Rat			•						
Chemical Prop	erties														
	Molecular Weight			_	Log10 Ocatnol Water Partition										
	g/mol 98.96				1.48										
Physiology															
	Body Weight				Cardiac Output					Hematocrit Factor					
	kg 0	kg 0.35				L/h/ kg.BW ¾ 14			0.42		0.42				
Fractional Blood Volu	ıme				F	actional Liver \	Volum	e			Fractional Rapidly F	Perfi	used Tissue Volume	Fractional Slow	y Perfused Tissue Volume
0.074 0.0387				0.0387					0.0647		0.6925				
Fractional Liver Blood Flow Fractional Rapidly Pe				ly Perf	fused Tissue Blood Flow Fractional SI			Fractional Slowly Pe	Slowly Perfused Tissue Blood Flow		Urine Production				
0.183			0.58				0.23			L/kg BW/day	0.012				
Partitions															
	Liver Par	Liver Parition Coefficient			_	Rapidly Perfused Tissue Partition Coefficient					Slowly Perfused Tissue Parition Coefficient				
	1.295				1.295			8.155							

https://scitovation.shinyapps.io/HESI_PBPKModel_KMD/

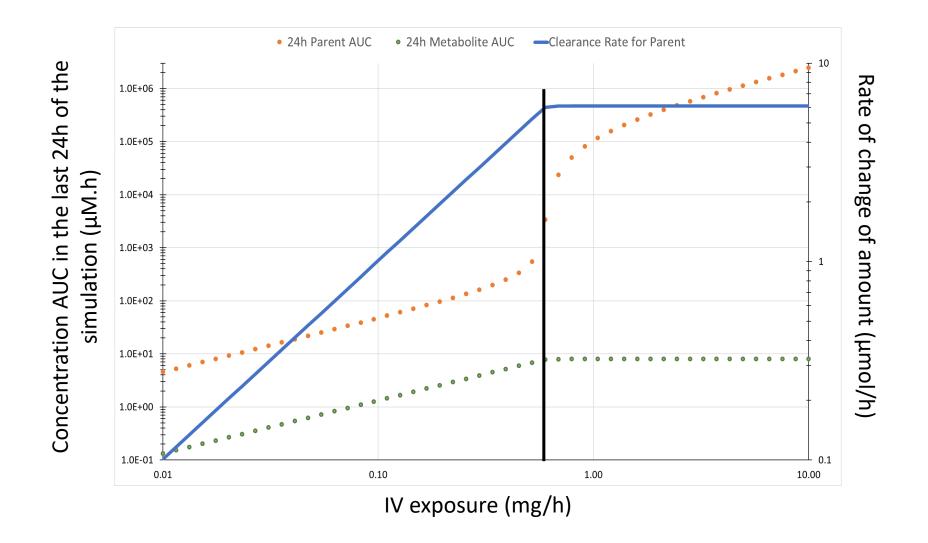
Case studies investigating different saturable processes

Limiting PK Process	Dosing	Parent absorption	Parent clearance	Metabolite clearance
Saturable clearance of the parent	IV infusion	NA	Michaelis-Menten Kinetics	Michaelis-Menten Kinetics
Saturable clearance of metabolite	IV infusion	NA	Michaelis-Menten Kinetics	Michaelis-Menten Kinetics
Saturable absorption of parent	Oral gavage	Michaelis-Menten Kinetics	First-order Kinetics	First-order Kinetics

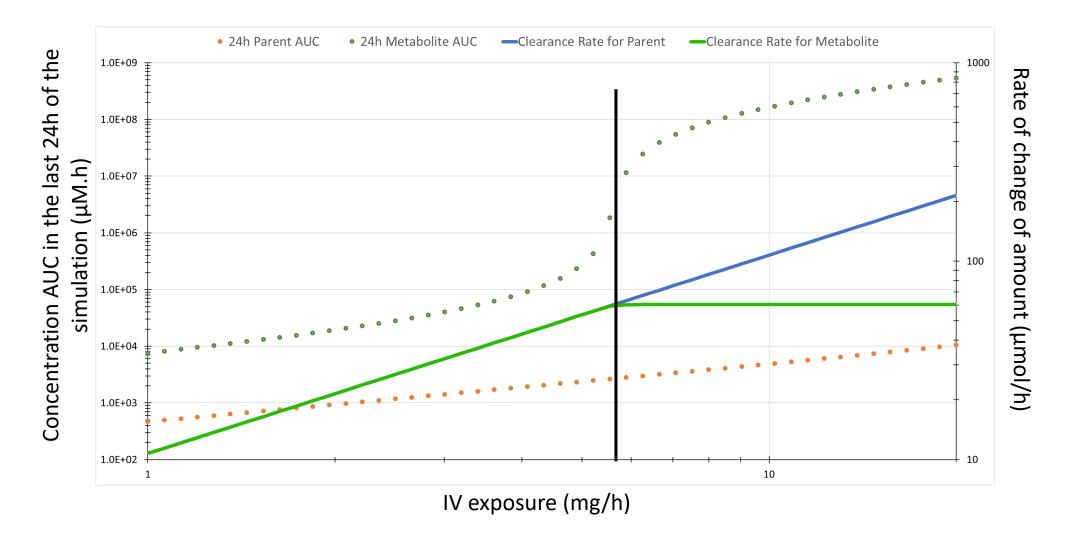

- 3 chemicals from the 8 used for the case studies.
- For the first two case studies, the parent and metabolite clearance was modeled using a Michaelis-Menten kinetics. Saturation of clearance happened as a result of the relative values of Vmax and Km to plasma concentration.

Chemicals used in simulations for this talk

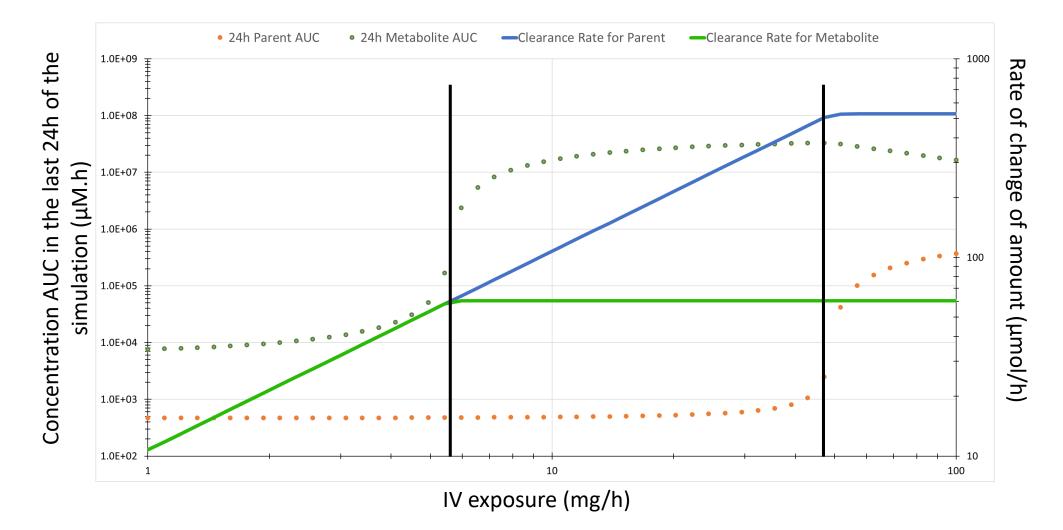
Chemical	Parent Clearance Rate – Vmax (µmol/h)	Parent Clearance – Km (µM)	Metabolite Clearance Rate – Vmax (µmol/h)	Metabolic Clearance Km (μM)
Chemical A : Saturable Clearance of the Parent	6.09525	2.5	2194	120
Chemical E : Saturable Clearance of the Metabolite	528.255	180	60.55	1470
Chemical B: Saturable Oral Absorption	189.63	1100	189.63	500

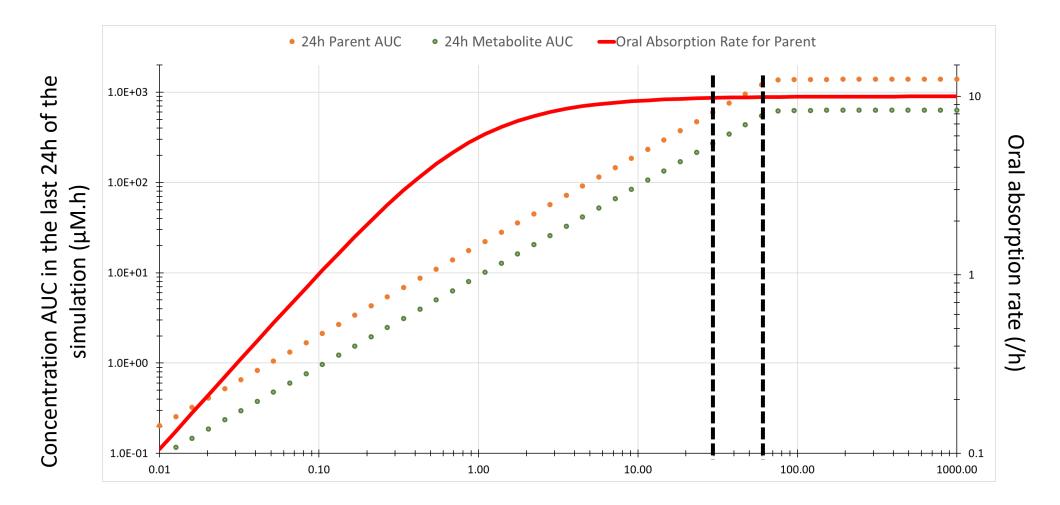

• Oral absorption was modeled as a saturable process for Chemical B with Vmax = 10 /h and Km = 2 μmols

Before we start looking at simulation results...

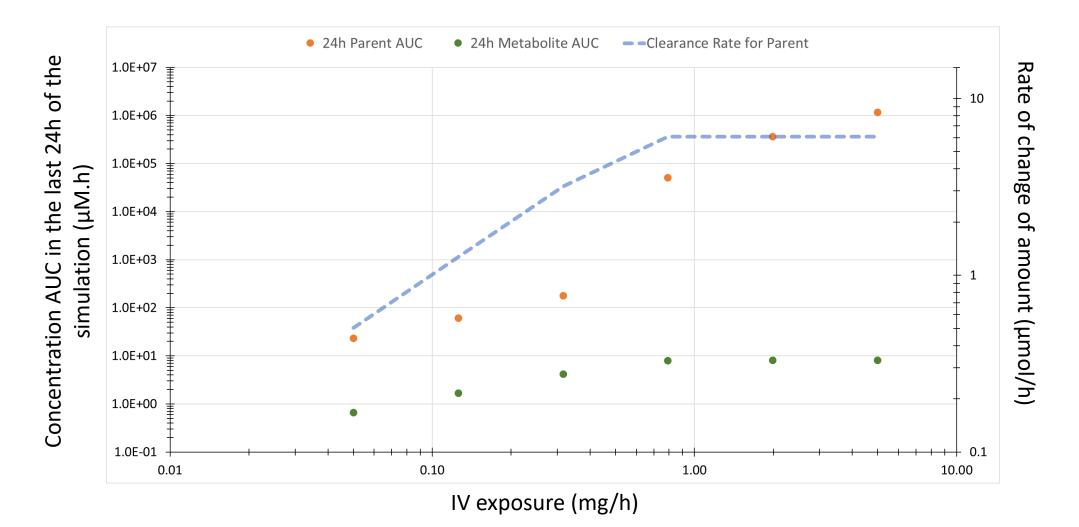


External Exposure (mg/h for IV or mg/kg BW/day for Oral)


Case Study 1 – Saturation of parent clearance (Chemical A)


Case Study 2- Saturation of metabolite clearance (Chemical E)

Testing the same chemical at a higher exposure...



Case Study 3 – Saturable oral absorption for parent (Chemical B)

Oral exposure (mg/kg BW/day)

More plausible dose response data

Points to consider

- The internal-external dose (IED) response can be quite complex and may appear linear at different regions along the response curve
- Understand the toxic moiety is important to application of KMD.
- Usually KMD is determined based on sparse IED data. Using in vitro methods and computational modeling, we may be able to simulate a dense IED relationship.
- Species extrapolation using PBPK modeling can be used to account for PK differences between human and animal. KMD can then be compared to human exposure

Summary

- Simulation illustrates different dose-response for parent and metabolite for different chemicals that should be considered for KMD
- Different saturating process impact the dose-response curves in different ways

Next Steps:

- Extend the simulations to include more saturating process to investigate more complex PK profiles
- We can sample the dense dose-response curve at different points to create datasets that can be used to test different approaches to fitting dose-response curves

Through some of the talks today we will...

- Look at statistical techniques that can be used to determine the point of non-linearity in a dose response curve
- Discuss how to incorporate knowledge of other biological processes that may lead to a non-linearity in the dose response curve.
- Understand the role of human exposure estimation in the use of KMD.

Acknowledgements

- Cecelia Tan
- Hugh Barton
- Mike Bartels
- Jeanne Demoradzki

The development of PLETHEM is funded by the American Chemistry Council – Long-range Research Initiative (ACC-LRI)