

National Centre for the Replacement Refinement & Reduction of Animals in Research

# Dose setting and considerations for the 3Rs

**Dr Fiona Sewell, ERT** Workshop on Kinetically Derived Maximum Dose Concept to Refine Risk Assessment

30 September 2020

**Pioneering Better Science** 

#### Dose setting and 3Rs consideration team

```
Jeanne Domoradski – Corteva, US
```

```
Elaina Kenyon – EPA/ORD, US
```

- Lata Koshy HSE Chemicals Regulation Division, UK
- Liz Mendez EPA/OPP, US
- Moiz Mumtaz ATSDR, US
- Fiona Sewell NC3Rs, UK

Cecilia Tan – EPA/OPP



#### **Problem formulation statement**

Lack of clear agreement on how to evaluate available data and approaches to determine top dose for repeated dose animal studies. The goal being to design dose-response studies that are **relevant to human exposures** and supportive of 3Rs principles.

Guidance states toxicokinetics should be 'considered' but limited information as to how this should be done.



#### The 3Rs



Reduction

Replacement

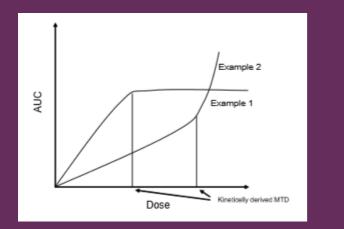
Refinement

#### Why do things differently?

- Recognition that animals can be poor predictors of humans
- Potential to reduce uncertainty and increase relevance of safety assessments
- Development of robust strategies that exploit all knowledge currently available
- Address societal concerns related to the use of animals in toxicity testing
- Meet legislative requirements around the marketing of chemical products and work towards global harmonization
- Reduce time and cost associated with chemical safety assessment without compromising human safety

NC

3R<sup>s</sup>

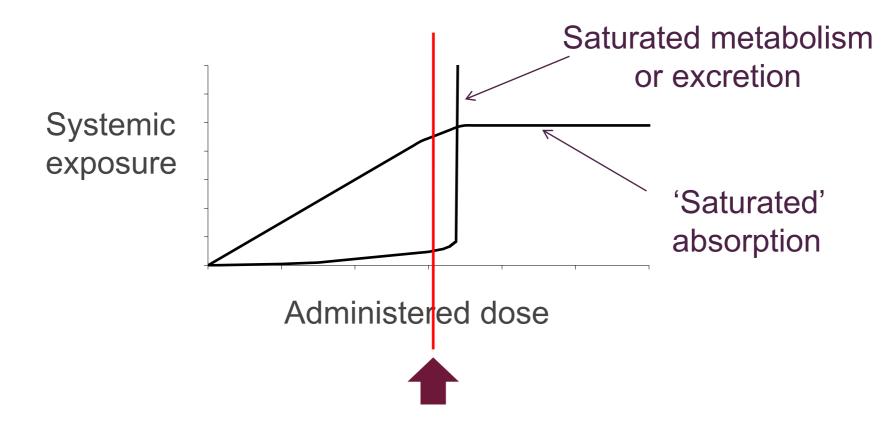

#### The 3Rs



|             | Standard                                                               | Contemporary                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction   | Methods which minimise<br>the number of animals<br>used per experiment | Appropriately designed and analysed animal experiments that are robust and reproducible, and truly add to the knowledge base                                                          |
| Refinement  | Methods which minimise<br>animal suffering and<br>improve welfare      | Advancing animal welfare by exploiting the latest<br><i>in vivo</i> technologies and by improving<br>understanding of the impact of welfare on<br>scientific outcomes                 |
| Replacement | Methods which avoid or replace the use of animals                      | Accelerating the development and use of models<br>and tools, based on the latest science and<br>technologies, to address important scientific<br>questions without the use of animals |



# Dose selection and the 3Rs






- 3Rs impact of inappropriate dose selection
- Top dose 'too high'
  - Unnecessary animal suffering
  - Study may need to be terminated or lose top dose group
  - Unreliable results e.g. due to 'biological stress' / metabolic shift
  - Data not relevant non-specific vs. chemical specific toxicity - may require further *in vivo* studies to explore MoAs occurring at doses far above realistic human exposures
- Top dose 'too low'
  - Repeat studies may be required to demonstrate toxicity additional animals used
- Critical to get the balance right and ensure the most scientifically appropriate doses are selected to add the most value

#### **Dose Selection**

NC 3R<sup>s</sup>



- Doses above this generally exceed realistic dose scenarios
- Hazard finding related to biological stress occurring at high doses is not relevant to human exposures at much lower levels

#### Advice on use of TK for dose selection

- Advice on dose selection in OECD\* Test Guidelines (TG 407, 408, 409, 451 and 453)
- 'Should' take into account any existing toxicity and TK data available

Additional information on specific OECD guidelines:

| Study                                         | Dose selection                                                                                                                                                                                            |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>OECD TG 409:</b><br>90 day non-<br>rodents | <ul> <li>Non-rodent should only be used where TK studies<br/>indicate use of specific non-rodent species most relevant</li> </ul>                                                                         |
| <b>OECD TG 451:</b><br>18 month carc          | <ul> <li>Should be based on the results of shorter-term repeat dose or range finder</li> <li>Should consider TK and dose ranges where metabolic</li> </ul>                                                |
| OECD TG 453:<br>2 year chronic /<br>carc      | <ul> <li>induction, saturation, or non-linearity between external and internal doses occur.</li> <li>Should consider known or suspected non-linearities or inflection points in dose–response.</li> </ul> |



\*Organisation for Economic Co-operation and Development

# Regulatory guidelines: TK and dose setting

NC 3R<sup>s</sup>

| Regulation                       | Summary of requirements/ recommendations                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OECD GD116<br>(2012)             | Design and Conduct of Chronic Toxicity and Carcinogenicity Studies (TG 451, 452, 453) suggests that TK should be considered in setting top dose ( <b>linear vs. non-linear kinetics</b> ).                                                                                                                                                                                         |
| OECD GD151<br>EOGRTS             | If info on TK processes is known, dose selection can be based on that info (e.g. <b>highest dose does not exceed absorption or the setting of doses within and beyond linear metabolism</b> ).                                                                                                                                                                                     |
| REACH<br>Chapter R.7c            | Use TK to support dose setting decisions for repeated dose studies.<br>TK data, especially info on ADME are highly useful. Dose level corresponding to the inflexion point<br>can be regarded as the kinetically derived maximum dose. <b>The highest dose-level should not</b><br><b>exceed into the range of non-linear kinetics.</b>                                            |
| EC/1107/2009                     | TK required in short and long-term studies. Dose level selection should take into account TK data such as saturation of absorption.                                                                                                                                                                                                                                                |
| US EPA OPP<br>HEDGD<br>#G2003.2  | Recommends 'use of innovative approaches'. Highest dose tested should not be above a dose that results in saturation of absorption.                                                                                                                                                                                                                                                |
| US EPA<br>EPA/630/P-<br>03/001F: | TK should be considered to set top dose. High dose should not compromise study outcome through inducing inappropriate TK (e.g. overwhelming absorption, detoxification mechanisms). <b>Overt toxicity or qualitatively altered TK due to excessively high dose may result in tumour effects that are secondary to the toxicity rather than directly attributable to the agent.</b> |

# High dose selection: pros and cons of different approaches

|            | Pros                                                                                                                                                                      | Cons                                                                                                                                                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit dose | <ul> <li>Historically used</li> </ul>                                                                                                                                     | <ul> <li>Arbitrary, not scientifically-driven</li> </ul>                                                                                                                                                                                                                                                 |
| MTD        | <ul> <li>Clearly identify adverse effects</li> <li>Simplifies hazard assessment</li> </ul>                                                                                | <ul> <li>Unnecessary animal suffering</li> <li>Ambiguity around tox endpoints used<br/>to determine MTD</li> <li>Effects may not be related to realistic<br/>human exposure</li> <li>May trigger additional testing (e.g.,<br/>mechanistic data for effects at non-<br/>human relevant doses)</li> </ul> |
| KMD        | <ul> <li>Considers multiple lines of evidence</li> <li>Human relevant exposures</li> <li>Avoids additional testing (e.g., MoA)<br/>at non-human relevant doses</li> </ul> | <ul> <li>May not be high enough for some jurisdictions (especially if no toxicity observed)</li> <li>May trigger additional testing</li> </ul>                                                                                                                                                           |



• Optimum approaches may differ in the context of fit-for-purpose

#### **Misconceptions**

Overt toxicity needs to be observed at top dose

- Repeat dose studies are intended to assess the effects of (realistic) repeated exposures over time - overt toxicity does not necessarily need to be demonstrated
- Different interpretations of adversity
- Loss of ability to maintain homeostasis (i.e. saturation of kinetic processes) demonstrates 'biological stress' and is thought to be equivalent to bodyweight loss limits typically used to determine MTD
- Limited value in increasing dose above saturation of absorption – increase in applied dose will not lead to increase in internal dose
- Limited value in demonstrating more than 'mild' toxicity, provided it is outside of expected human exposure



#### **Misconceptions**

Use of KMD to set top dose in chronic toxicity study requires more animal use than traditional MTD

- Some cases may require additional dose levels of PK studies to determine KMD – but often balanced by benefits in overall package
- Incorporation of TK helps increase the available information to allow more informed decisions on dose selection
- Generally same studies and same numbers of animals used whether MTD or KMD approach
- Microsampling allows integration of TK and avoids the need for satellite groups
- Reduced chance of generating irrelevant toxicity data that may require additional mechanistic studies to explain relevance to humans



### Use of toxicokinetics to inform dose selection

- Integration of TK into all studies maximises information available for dose setting
- Studies are often conducted in a specific order, so that at each stage more information is available to inform dose selection
- Consequence of inappropriate dosing increases with study duration and sample size

| ole       | Repeat dose studies |                 | DART          | studies           |                  |
|-----------|---------------------|-----------------|---------------|-------------------|------------------|
| available |                     | DRF study       |               |                   | ation,<br>nals   |
| data a    |                     | 28 day study    |               |                   | er dur<br>e anir |
| More d    |                     | 90 day study    | Probe dev tox | Probe repro study | Longer<br>more   |
|           |                     | 2 year bioassay | Main dev tox  | 2-gen repro study |                  |



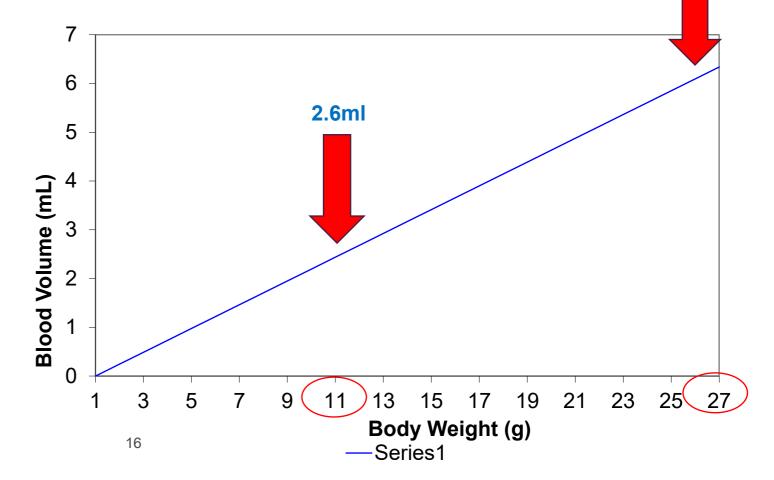
#### Repeat dose studies – animal numbers

| Study                       | Species | OECD | Spacias | Animal numbers     |          |         |
|-----------------------------|---------|------|---------|--------------------|----------|---------|
| Study                       | Species | TG   | Species | Study design       | Range    | Typical |
|                             | Dog     | -    | Dog     | 2 / sex / 4 doses  | 8        | 8       |
| 28 day                      | Mouse   | 407  | Mouse   | 5 / sex / 4 doses  | 40 - 60  | 50      |
|                             | Rat     | 407  | Rat     | 5 / sex / 4 doses  | 40 - 80  | 40      |
|                             | Dog     | 409  | Dog     | 4 / sex / 4 doses  | 32 - 48  | 32      |
| 90 day                      | Mouse   | 408  | Mouse   | 10 / sex / 4 doses | 80 - 100 | 80      |
|                             | Rat     | 408  | Rat     | 10 / sex / 4 doses | 80 -100  | 80      |
| 18 month carc               | Mouse   | 451  | Mouse   | 50 / sex / 4 doses | >400     | 400     |
| 2 year<br>chronic /<br>carc | Rat     | 453  | Rat     | 64 /sex / 4 doses  | >512     | 656     |



Huge impact of getting the dosing 'wrong' – especially if leads to repeat and/or additional investigational studies

#### **Examples of MoA studies**


NC 3R<sup>s</sup>

Supplemented with *in vitro* and *in silico* data (e.g. structure-activity relationships, SARs)

| Study trigger / investigation                                                                                         | Study designs                                                                                                                                                                     | Typical animal numbers used |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| <b>Standard Liver MoA</b><br>Liver tumours (in mouse<br>and/or rat)                                                   | 10 / single sex / 4 groups / 3 timepoints (days 1,7 & 28)                                                                                                                         | 120 – 480                   |
| <b>Standard Thyroid MOA</b><br>Thyroid tumours (in mouse<br>and/or rat)                                               | 15 / single sex / 4 groups / 3 timepoints (days 1,7 & 28)                                                                                                                         | 180 – 720                   |
| To establish human (non)<br>relevance for liver tumours,<br>strain comparison for transfer<br>to liver KO mouse study | 4 / single sex / 5 groups (to assess PK<br>linearity) / 2 timepoints (days 1 & 7 to account<br>for limitation in mouse PK sampling) / 3<br>strains (e.g. CD1, KO WT & KO strains) | 120 – 240                   |
| Liver KO mouse Study                                                                                                  | 10 / single sex / 4 groups / 2 timepoints (days<br>1 & 7) / 3 strains (e.g. CD1, KO WT & KO<br>strains)                                                                           | 240 – 480                   |

## Integration of TK and blood sampling limits

- Up to 10% total blood volume taken on a single occasion from a normal, healthy animal.
- No more than 15% of circulating blood volume taken in a 28 day period.
- Scenario: to take 8 samples (~200 µl) at start and end of a toxicology study plus others for additional parameters (e.g. clin path) would require ~5.6 mL of blood – this is a rat weighing 650 g!
- Most rats weigh 250 g, with less blood!



5.6ml



# How to reduce volume required per animal?

- Fewer timepoints
- But may not achieve scientific objectives of study



- More animals e.g. satellite group for TK
- Would enable sufficient conventional samples to build a TK profile
- But can increase the number of animals by over 40%
- OR

NC

- Microsampling
- 2 x 8 point profiles using 50 µl microsamples requires 0.8mL blood which represents around 5% of total blood volume





## Reduction in animal use by using microsampling

| Example: 90 day | rat study with | satellite animals |
|-----------------|----------------|-------------------|
|-----------------|----------------|-------------------|

| Dose group        | Low     | Medium  | High    | Control |
|-------------------|---------|---------|---------|---------|
| Main study        | 10M+10F | 10M+10F | 10M+10F | 10M+10F |
| TK satellite      | 6M+6F   | 6M+6F   | 6M+6F   | 3M+3F   |
| Total for 1 study |         |         |         | 122     |

Example: 90 day rat study with microsampling allowing smaller satellite groups

| Dose group        | Low     | Medium  | High    | Control |       |
|-------------------|---------|---------|---------|---------|-------|
| Main study        | 10M+10F | 10M+10F | 10M+10F | 10M+10F |       |
| TK satellite      | 3M+3F   | 3M+3F   | 3M+3F   | 3M+3F   | 18 fe |
| Total for 1 study |         |         |         | 104     | anim  |

Example study design: 90 day rat study with microsampling of main study animals

| Dose group        | Low     | Medium  | High    | Control |          |
|-------------------|---------|---------|---------|---------|----------|
| Main study        | 10M+10F | 10M+10F | 10M+10F | 10M+10F | 42 fewer |
| Total for 1 study |         |         |         | 80      | animals  |

#### Microsampling



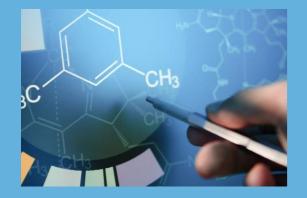
Improves the science and reduces and refines animal use simultaneously 1. Scientific benefit:

- Comparison of data within the same animal at different time points – acts as own control and can track changes from baseline.
- Allows direct comparison of different datasets e.g. exposure data and toxicology in same animal.
- 2. Reduced stress:
  - quicker, reduced or no warming
  - reduced handling and stress
- 3. Less blood loss, allows serial samples from same animal\*
- 4. Use fewer animals overall
- 5. Less test item needed, less housing space/husbandry financial savings

\* Within limits of acceptable needle-stick punctures & animal burden



#### **Common questions / concerns**




- Microsampling is being used for agrochemicals and CROs are reporting an increase in TK sampling in these toxicity studies
- LCMS-MS sensitivity has increased over past decade allows detection of low concentrations of analytes
- The European Bioanalysis Forum (EBF) have investigated and published recommendations / best practices to ensure scientific quality and reproducibility of microsamples



 Clinical pathology parameters and functional measurements similar to vehicle animals, when microsampling from main test adult and juvenile animals included – bibliography with evidence on NC3Rs website

#### Incorporation of nonanimal approaches



- Opportunities to integrate non-animal kinetic (*in vitro* or *in silico* data) and dynamic data to inform dose selection in repeated dose animal studies
- TK information can help inform IVIVE and ensure new approach methodologies (NAMs) use appropriate and relevant concentrations
- Allows more hypothesis/data-driven testing to be conducted
- Use of AOP-driven approaches to identify biomarkers for molecular initiating events to be tested in *in vitro* or early *in vivo* studies to avoid the need for future testing in animals, or testing at irrelevant high doses.

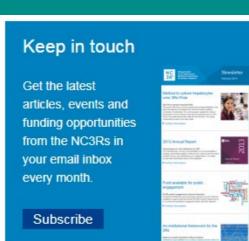


#### Summary

Use of TK offers opportunities to both improve science and benefit the 3Rs

- 3Rs consequence of inappropriate dose selection
- TK can provide information on dose exposure relationship to inform more appropriate dose selection (i.e. to reflect effect of the compound following repeat exposure - not the effect on a 'stressed system')
- Highest dose should ideally be within linear kinetics
- Benefits include more informative and scientifically refined dosing, and offers 3Rs benefits - reduced suffering to animals (and fewer animals overall)
- Need a better understanding of when the KMD approach may/may not be appropriate for regulatory (and other) purposes
- Need guidance on how to present and communicate the data to regulators so that it is acceptable – what do they need to see?




National Centre for the Replacement Refinement & Reduction of Animals in Research

# Thank you!

#### For more information

fiona.sewell@nc3rs.org.uk
www.nc3rs.org.uk
www.facebook.com/NC3Rs
@NC3Rs

#### **Pioneering Better Science**





Check out our microsampling resources: www.nc3rs.org.uk/3rs-resources/blood-sampling