Development and Validation of a Serological Potency Test for the Release of *Leptospira* Vaccines - Requirements in the European Union

ICCVAM-Workshop on Leptospirosis, 19 – 21 September 2012
U.S. Department of Agriculture Center for Veterinary Biologics
National Centers for Animal Health Ames, Iowa, USA

Elisabeth Balks
Paul-Ehrlich-Institut
Veterinary Department
Licensed vaccines

• Canine vaccines
 \textit{L. interrogans}
 Serogroup
 – Icterohaemorrhagiae
 – Canicola
 – Australis

\textit{L. kirschneri}
 Serogroup
 – Grippotyphosa

• Bovine vaccine
 \textit{L. borgpetersenii}
 Serovar
 – hardjo (type hardjobovis)
Leptospiral membrane protein architecture

LPS

- Target for agglutinating and opsonizing antibodies
- Immunity mostly serovar-specific
- Correlates with levels of agglutinating LPS-specific antibodies in transferred sera
- LPS-specific mabs passively protect naive animals from leptospirosis
- Purified LPS can stimulate active immunity

Zuerner et al., 2000, J Mol Microbiol Biotechnol, 2(4), 455
Batch potency

- Hamster challenge

- Microscopic agglutination-test (MAT)

- Antigen quantification (pabs/mabs)
Microscopic Agglutination-Test (MAT)
(Martin and Pettit, 1918)

• Serial dilution of serum plus equal volume of leptospirosis
• Estimating 50% agglutination as the end point titre
• Paired serum samples
• Most important: antigen density/definition of significant titres
• Inactivation without agglutination in case of very low titres
• Titres serovar and vaccine (components, adjuvant) dependent
• Reactivity of animals weight dependent
• Transferability poor

(Goddard et al. 1986, J Biol Stand, 14, 337; Ebert 1999, Pharmeuropa special issue Bio 99-2, 102; Ebert et al. 2000, ECVAM project, contract no. 12992-97-06 F1ED ISP D, Study 2)
MAT

Strengths

• Specificity
• Detection of group-specific antibodies
• Detection of protective antibodies (Challa et al., 2011, Vaccine 29, 4431)
• Titres reflect reaction to entire vaccine (no further vaccine processing required)
• Titres reflect vaccine dose/vaccination scheme
• Suitable for testing of non-lethal strains and stability testing

Weaknesses

• Requires animal testing (ethics, costs, time, extrapolation of data between species)
• Maintenance of live reference strains (contamination, mislabelling, switching of strains, hazardous)
• Standardization and transfer difficult
• No differentiation of IgM and IgG (as compared to ELISA)
• Might not be suitable for all vaccines
Validation

• Technical guide for the elaboration of monographs, Chapter III, Analytical Validation, 6th ed. (2011)

• VICH Guideline 1 (1998)
 Validation of analytical procedures: Definition and terminology

• VICH Guideline 2 (1998)
 Validation: Methodology

• Hendriksen et al. (1998)
 Validation of alternative methods for the potency testing of vaccines (ATLA, 26, 747–761)
Validation/test validity criteria for routine quality control

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Type of test</th>
<th>Identity</th>
<th>Purity quant.</th>
<th>Purity qual.</th>
<th>Content/Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Accuracy</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Precision</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Linearity</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Detect. limit</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quant. limit</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Range</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Specificity

• Ability to **assess unequivocally the analyte** in the presence of other antigenic components/excipients/residuals/degradants.

 – Veterinary vaccine preparations are not purified preparations in most cases.
 – For multivalent vaccines, it is necessary to test the specificity of the response for each component in the vaccine.

⇒ During validation and each time a critical reagent is changed
Specificity of serological assays

• **Clinical relevance**
 – Correlation to efficacy/in vivo potency (passive protection studies; vaccination-challenge tests)
 – Dose/response (titration) studies (fraction dose preparations/placebo vaccine)

• **Immunorelevance/Immunodominance**
 – Epitope(s) detected by vaccinated/challenged animals
 – Epitope(s) not detected by naive animals
 – specific/related/unrelated antigens
 - • ELISA/Agglutination assay/Western blot
 - • “Growth Inhibition Test” (in vitro)
Specificity vs. Consistency

PARADIGM SHIFT

Acceptance of the consistency approach will imply a major shift in current thinking. Current alternative approaches are too often characterized by the replacement of individual quality control tests (1 by 1 replacement) during in the established practice of the unique product with emphasis.

"In vitro
tests do not
do and not have
provide and
do not have to provide the same information as in vivo tests."

FOCUSED APPROACH

In conclusion, participants agreed to embark on this challenging project, diversifying activities between vaccines for human and for veterinary use. Authorities and representatives of vaccine manufacturers issue guidance and advice on prioritization criteria and to select the pilot projects.

Consistency testing starts from an earlier (reference) lot (clinical) which is thoroughly characterized with regard to quality, safety and efficacy, consistent production, control and strict application of quality assurance. Lot release is then aligned with the reference lot. This shift in paradigm implies the acceptance that in vitro tests do not have to provide and do not have to provide the same information as in vivo tests.

INTERNATIONAL SUPPORT

Since the majority of EU vaccines production outside the EU, representatives of EU highlighted the need for convergence at the level. Representatives of the EDQM high interest in the project, explained EDQM and suggested conditions and mechanisms forward. Authorities from US and Canada their interest in participation.

For further information:
Contact: enter-epaa@ec.europa.eu
Accuracy

Closeness of agreement between conventional true value and value found (recognize/eliminate systematic errors)

min. 9 determinations

• quantitative accuracy
 – Usually expressed as agreement of mean value (incl. confidence interval) and specification of respective test signal (e.g. $x \pm 2$ SD) set beforehand.

• validated alternative procedure
Accuracy

1) Trials to fix the specification of relevant test parameters (e.g. mean +/- 2 s)

\[
\left[\begin{array}{c}
\bar{x} - 2 \cdot s \\
\bar{x} \\
\bar{x} + 2 \cdot s
\end{array} \right]
\]

2) Validation successful, if mean value including 95% confidence interval fall completely within specification set beforehand.

\[
\left[\begin{array}{c}
\bar{x}' \\
\bar{x}
\end{array} \right]
\]

95%-Confidence interval
Precision

Closeness of agreement between a series of measurements obtained from multiple sampling of the same homogenous sample under the prescribed conditions (recognise/eliminate random errors)

– Usually expressed as variance, standard deviation or coefficient of variation of a series of measurements (min. 6 determinations)

– 3 Levels:
 • Repeatability
 • Intermediate precision
 • Reproducibility
A - accuracy, P - precision, “+” - acceptable, “-” - not acceptable
Linearity

• Test result (within a given range) is proportional to the concentration/amount of analyte

• A linear relationship should be evaluated across the range of an analytical procedure

• In some cases data may need to be subjected to mathematical transformation prior to regression analysis

• For the establishment of linearity a minimum of 5 concentrations is recommended

The batch release value (OD, antigen content, titre) must fall within the linear part of the titration curve
Range

• Interval between the upper and lower concentration (amounts) of analyte in the sample for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity.
Assessment of batch potency
I. Relative potency

Ph. Eur. 5.3:
STATISTICAL ANALYSIS OF RESULTS OF BIOLOGICAL ASSAYS AND TESTS

...The principle applied wherever possible throughout these assays is that of comparison with a standard preparation so as to determine how much of the substance to be examined produces the same biological effect as a given quantity, the Unit, of the standard preparation...

- standard vaccine shown to be efficacious in target species
- standard serum derived thereof (advantageous in terms of 3Rs)
Assessment of batch potency

I. Relative potency

• Parallel line assay
• Four-parameter logistic curve model
Assessment of batch potency
II. Fixed acceptance criteria

• **Release limit** (mean + 3 SD of sub-standard batch)

• **Reference interval** (Mean ± 2 (3)SD of batches with 100% antigen)
 – covers 95.4 % (99.7 %) of the population

• **Tolerance interval**
 – Interval that cover percentiles of the population
 – Interval that cover percentiles of the population **with a certain probability**
Assessment of batch potency

II. Fixed acceptance criteria

![Graph showing validation and pass limit with data points]

- Measured values
- Pass limit
Assessment of batch potency
II. Fixed acceptance criteria
Detection of sub-standard batches

• Sub-standard batch still efficacious in target animal species
• Will not pass batch potency test

⇒ analytical sensitivity („Discriminative power“) of potency test (slope of dose-response curve)
⇒ Sero-response may be antigen specific
⇒ There may be need for additional testing in the target species or adjustment of antigen content.
Thank you for your attention