
The Tox21 and ToxCast programs include in vitro assays conducted in a high-throughput screening (HTS) 

format. Many are relevant to the androgen receptor (AR) pathway and can identify substances with potential 

androgenic/anti-androgenic activity in vivo. Here we used nine of these assays to build a mathematical model to 

distinguish true AR pathway activity from technology-specific assay interference. The assay battery probed 

perturbations of the AR pathway at multiple points (receptor binding, cofactor recruitment, gene transcription and 

protein production) in multiple cell types. We compiled a list of putative AR reference chemicals from the 

ICCVAM and OECD reference chemical lists. Chemicals included agonists, antagonists, selective androgen 

receptor modulators (SARMs), and inactive chemicals. The model showed 96% (22/23) concordance with 

reference data, including successfully identifying multiple SARMs with both agonist and antagonist activity. The 

model identified as agonists or antagonists all chemicals in the ToxCast library known to specifically target AR, 

as well as chemicals such as prochloraz with known anti-androgenic activity in vivo. However, fluoranthene, a 

putative SARM, was active in the cofactor recruitment assays but none of the other AR pathway assays, and was 

therefore mispredicted by the model as acting via an assay-specific interference pathway. We discuss patterns of 

assay activity and pathway predictions across 1846 ToxCast chemicals and identify those predicted to be active 

against the AR pathway. The results from the AR pathway model were used to train and build a cross-validated 

quantitative structure–activity relationship (QSAR) model for AR binding and used to make predictions for 30,000 

chemicals. Where available, we compared in vitro and in silico predictions to toxicity data from the literature to 

identify potential trends relating to use case and exposure scenarios. (Data in poster abstract have been updated 

to reflect the most recent analyses.) 
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• Data on 1846 chemicals were generated during ToxCast Phases I and II using nine AR pathway 

assays (Table 1): 

‒ Two cell-free biochemical radioligand AR binding assays (Novascreen: Knudsen et al. 2011; 

Sipes et al. 2013) 

‒ Two cofactor recruitment assays that measure protein:protein interaction between AR and 

SRC1 (Odyssey Thera: Filer et al., manuscript in preparation) 

‒ One transactivation assay measuring reporter gene levels (Attagene: Martin et al. 2010; 

Franzosa et al. manuscript in preparation) 

‒ Two transactivation assays measuring reporter protein level readouts (Tox21: Huang et al. 

manuscript in preparation) 

‒ Two transactivation antagonist assays (Tox21: Huang et al. manuscript in preparation) 

• Figure 1 shows how the assays map to a model of the AR pathway. 

• The chemicals were tested in concentration–response format in all assays except for the cell-free 

binding assays. These were initially tested at a single concentration (25 µM), and if significant 

activity was seen, the chemical was then tested in concentration–response mode. 

• All concentration–response assay data were analyzed using the ToxCast data analysis pipeline, 

which automates the processes of baseline correction, normalization, curve-fitting, hit-calling, and 

AC50 (half-maximal activity) determination. The pipeline also detects a variety of potential 

confounders, which are annotated as “caution flags”. The pipeline and all raw and processed data 

and annotations are publicly available (http://actor.epa.gov/). 

 

Table 1. Assays Used in the AR Pathway Model 

 

 

High-Throughput Screening Data 
• The AR pathway model performed well at predicting AR pathway activities of the reference 

chemical set, including identifying SARMs with both agonist and antagonist activities. Further, all 

15 chemicals in the ToxCast library known to interact specifically with the AR were identified by the 

model as either agonists or antagonists with R1 or R2 > 0.1, and environmental chemicals with in 

vivo evidence of AR pathway perturbation, such as prochloraz, were also identified by the model. 

• The majority of the 1846 ToxCast chemicals tested in the AR assays were not predicted by the 

model to have any androgenic or anti-androgenic activity. Certain environmental chemicals such as 

antimicrobials (e.g., triclosan and triclocarban) and plasticizers (e.g. bisphenol A and bisphenol AF) 

were predicted to be AR antagonists, but these results were confounded by cytotoxicity, and more 

targeted testing within the relevant concentration ranges may be required. 

• The AR pathway model provides a biologically based mathematical approach to distinguish assay 

interference from true agonist or antagonist activity and to prioritize large numbers of 

environmental chemicals for their potential androgenic or anti-androgenic activity. 

• QSAR models trained on the AR pathway model will be further developed and consensus models 

built to make predictions for 30,000 chemicals in the environment. 

 

Conclusions 
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A summary of NICEATM activities at the 2015 SOT Annual Meeting is available on the National Toxicology 

Program website at http://ntp.niehs.nih.gov/go/742110. 
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• We developed a simple linear additive model to predict the relative androgenic or anti-androgenic 

activity of a test chemical, using data from the assays that map to the AR pathway in Figure 1. 

• The model assumes that the value (the efficacy, A) returned by an assay at a given concentration 

is a linear sum of the contributions from the receptors that it measures: 

𝐴𝑖 = 𝐹𝑖𝑗𝑅𝑗
𝑗

 

• The model then seeks a set of 𝑅𝑗 values that minimize the difference between the predicted assay 

values (𝐴𝑖
𝑝𝑟𝑒𝑑

) and the measured ones (𝐴𝑖
𝑚𝑒𝑎𝑠) for each chemical–concentration pair. A 

constrained least-squares minimization approach is used, where the function being minimized is: 

𝜀2 = 𝐴𝑖
𝑝𝑟𝑒𝑑
− 𝐴𝑖
𝑚𝑒𝑎𝑠

2

𝑖

+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑅) 

• The term penalty(R) penalizes solutions that predict that many receptors are being simultaneously 

activated by the chemical: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑅 = 𝛼
𝑆𝑅2

𝑆𝑅2+𝑆𝑅0
2   

In this equation, SR is the sum of R values at that concentration, 𝑆𝑅0 is a threshold value, and 𝛼 is 

a small number between 0 and 1. This penalty term helps stabilize the solutions and is based on 

the assumption that it is unlikely that most chemicals will strongly and specifically interact with 

many dissimilar molecular targets. 

• The model produces a response value (between 0 and 1) for each receptor at each concentration. 

These results are summarized as the integral across the concentration range, expressed as area 

under the curve (AUC): 

𝐴𝑈𝐶𝑗 =
1
𝑁𝑐𝑜𝑛𝑐
 𝑠𝑖𝑔𝑛(𝑠𝑙𝑜𝑝𝑒) × 𝑅𝑗(𝑐𝑜𝑛𝑐𝑖)

𝑁𝑐𝑜𝑛𝑐

𝑖=1

 

• Because the biological response of greatest environmental concern is AR pathway antagonism, 

the AUC scores are normalized to yield a value of 1 for the antagonist positive control  

(OECD 2010).  

 

Mathematical Model 

Figure 1.  AR Pathway Modela 

• U.S. (7 U.S.C. 136, 110 Stat 1613) and international regulations require the testing of certain 

chemicals for the detection of potential endocrine activity (estrogen, androgen, steroidogenesis, 

and thyroid pathways). 

• As many as 30,000 chemicals may lack sufficient testing data for this purpose, with several 

hundred new chemicals being added each year (EPA 2011). 

• The U.S. Environmental Protection Agency (EPA) ToxCast chemical research program (Dix et al. 

2007; Judson et al. 2010) and the Tox21 U.S. federal partnership (Tice et al. 2013) include 

multiple endocrine-related high-throughput screening (HTS) assays. 

• Following an approach used to model the estrogen receptor pathway (EPA and NICEATM 2014), 

we have constructed a mathematical model to predict chemically induced androgen receptor (AR) 

activity based on nine HTS assays that map to the AR pathway. 

 

Introduction 

• Figure 1 depicts a model of the network used to evaluate the integrated in vitro assay responses. 

The model is based on the molecular events that typically occur in a receptor-mediated response. 

• The process starts with the interaction of a chemical with a nuclear AR (receptor node R1). 

‒ For example, an AR agonist will cause the receptors to dimerize (node N1), translocate to the 

nucleus and recruit cofactors to form the complete active transcription factor complex  

(node N2).  

‒ This transcription factor complex then binds to the chromatin DNA (node N3) and initiates 

transcription of mRNA (node N4) and subsequent translation to protein (node N5). 

• Each of these processes except dimerization and DNA binding was assessed by one or more of 

the nine in vitro assays listed in Table 1 (represented in Figure 1 as white stars). 

• Figure 1 shows the two modes of the AR pathway: agonist (blue icons beginning with R1) and 

antagonist (red icons beginning with R2). The model assumes that a chemical that interacts with 

the AR will bind in either or both of the agonist or antagonist conformations, triggering activity in 

the appropriate pathway. 

• Each of the in vitro assays is subject to processes that can lead to nonspecific activity 

independent of the activity of the AR pathway node that it is supposed to measure. These may be 

due to biological interference, artifacts, or other sources of experimental noise. These assay 

interference pathways are shown in Figure 1 as alternate “pseudo-receptors” (gray arrow nodes, 

A1 for example). 

• Examples of how a specific chemical may interact with the AR pathway are shown in Figure 2, in 

which pink highlighting represents the expected activity from a true agonist (Figure 2a), 

antagonist (Figure 2b), or a chemical causing assay interference (Figure 2c). 

 

AR Pathway Network 

• A set of 23 reference chemicals was used to evaluate model performance (Table 2). These were 

chosen based on consistent in vitro results in reports from ICCVAM (ICCVAM 2003) and OECD 

(OECD 2010) and their inclusion in the ToxCast chemical library.  

• Figure 3 summarizes the performance of the model in predicting reference chemical activity. 

 

Table 2. Reference Chemicals 

 

Evaluation of Model Performance 

Figure 3. AR Pathway Receptor AUC Values for Reference Chemicalsa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbreviations: AR = androgen receptor; AUC = area under the curve. 

 
a Labels along the bottom of the figure refer to receptor pathways in Figure 1, with the agonist and antagonist 

pathways being R1 and R2 respectively. Reference chemicals are color-coded on the sidebar as agonist 

(green), antagonist (red), selective androgen receptor modulator (both agonist and antagonist activity, yellow) 

or inactive (grey). Red colored areas represent AUC scores of at least 0.05; darker color indicates larger AUC 

values. 

 

• Overall, the model showed 96% (22/23) concordance in identifying agonist or antagonist AR 

activity across the reference set, using a threshold of 0.05 as a positive AUC score. 

‒ The three inactive reference chemicals (atrazine, dibutyl phthalate, and diethylhexyl 

phthalate) were identified by the model as being inactive.  

‒ All five agonist reference chemicals produced a high agonist (R1) AUC score, and were 

correctly predicted to act via true AR agonism. One agonist chemical, androstenedione, 

showed potential assay interference via the R6 receptor pathway but the model score was 

much lower than for agonist activity.  

‒ Of the eight antagonist reference chemicals, all were identified as true antagonists with high 

antagonist (R2) AUC scores.  

‒ Three antagonist reference chemicalsflutamide, bisphenol A, and procymidonewere also 

predicted to potentially act via assay interference pathways R3 and R7, but the scores were 

all lower than for antagonist activity.  

• The model correctly identified multiple selective androgen receptor modulators (SARMs) that have 

both agonist and antagonist activity. 

‒ Four SARMs were correctly predicted to have both agonist and antagonist activity by the 

model, while two SARMs (spironolactone and linuron) were only identified as antagonists.  

‒ Fluoranthene, also a SARM, was active in the cofactor recruitment assays but none of the 

other AR pathway assays, and was therefore incorrectly characterized by the model as acting 

via an assay-specific interference pathway (R4).  

• Examples of assay concentration–response plots and model AUC predictions are shown in 

Figure 4 for testosterone propionate (reference agonist), vincolozolin (reference antagonist), 

cyproterone acetate (reference SARM), and prochloraz (pesticide with known AR antagonist 

behavior in vivo) (Wilson et al. 2008). 

• Figure 5 shows the distribution of AR model pathway scores across the ToxCast chemical library. 

– The figure includes the maximum agonist or antagonist AUC score for each chemical. 

– Of the 1846 chemicals tested, 1587 were completely inactive in the model, with both R1 and 

R2 scores below 0.0001, while 148 chemicals were predicted to be either androgen agonists 

or antagonists (R1 or R2 > 0.1). The remaining 120 chemicals had model scores in the 

intermediate region.   

• Figure 6 is a calibration curve to aid interpretation of the AUC distributions, showing that an AUC 

of 0.1 is equivalent to half-maximal activity against the AR pathway at ~100 µM. 

 

Figure 5. AR Pathway Model Scores for 1855 ToxCast Chemicalsa 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation: AR = androgen receptor. 

 
a  The histogram shows AR pathway model scores, using the maximum R1 (agonist) or  

R2 (antagonist) value and without applying the cytotoxicity filter, across the 1855 chemicals in the 

ToxCast library. 

 

 

Figure 6. Calibration Curve for AR Pathway Model Scores 

 

 

 

 

 

 

 

 

 

 

Abbreviations: AC50 = half-maximal activity concentration; AR = androgen receptor; AUC = area 

under the curve. 

 

 

Activity in the AR Pathway Model across the 

ToxCast Library 

ID Assay Name Source Gene Species Type 

A1 NVS human AR Novascreen AR Homo sapiens Receptor binding 

A2 NVS chimpanzee AR Novascreen AR P. troglodytes Receptor binding 

A3 OT_AR_ARSRC1_0480 Odyssey Thera AR;SRC Homo sapiens Cofactor recruitment 

A4 OT_AR_ARSRC1_0960 Odyssey Thera AR;SRC Homo sapiens Cofactor recruitment 

A5 ATG_AR_TRANS Attagene AR Homo sapiens RNA reporter gene 

A6 Tox21_AR_BLA_Agonist_ratio NCGC AR Homo sapiens β-lactamase reporter gene 

A7 Tox21_AR_LUC_MDAKB2_Agonist NCGC AR Homo sapiens Luciferase reporter gene 

A8 Tox21_AR_BLA_Antagonist_ratio NCGC AR Homo sapiens β-lactamase reporter gene 

A9 Tox21_AR_LUC_MDAKB2_Antagonist NCGC AR Homo sapiens Luciferase reporter gene 

Figure 2. Examples of Chemical Interactions 

 with AR Pathway Modela 

Abbreviation: AR = androgen receptor. 

 
a Arrows and assays highlighted pink represent the expected AR pathway model activity from a chemical that is  

(a) a true AR agonist, (b) a true AR antagonist, or (c) acting through an interference pathway.  

Figure 4. Examples of Chemical Activity in Assays and 

 Receptor AUC Values from the AR Pathway Model 

Abbreviations: AR = androgen receptor; SARM = selective androgen receptor modulator. 

 

Left plots show assay responses and right plots show model predictions, corresponding to legend. The vertical green line represents the median AC50 (half maximal activity concentration) across the AR pathway assays. The gray box 

represents the region of potential cytotoxicity, and the vertical red line represents the median cytotoxicity AC50, where applicable. 

• We developed a scheme to filter out nonselective assay hits attributed to cytotoxicity using the 

distance between the logAC50(assay) and the median logAC50(cytotox), with respect to the 

global cytotoxicity MAD (the median of the median absolute deviation [MAD] of the  

logAC50(cytotox) distributions across all chemicals).  

• For chemicals with two or more positive responses in cytotoxicity assays, a “Z-score” was 

calculated for each AR pathway assay hit as: 

 

 

• A large Z-value will occur at concentrations significantly below those causing cytotoxicity. Thus, a 

hit associated with this Z-value is unlikely to be caused by either cell-stress or cytotoxicity-related 

processes and is more likely to be associated with a target-selective mechanism.  

• However, in instances where a loss of signal is observed, it is still difficult to distinguish 

antagonism from cytotoxicity. This is of particular concern because many environmental 

chemicals exhibit antagonist activity. Thus, efforts to improve cytotoxicity filtering are continuing. 

 

Cytotoxicity Filter 

 
tyMADcytotoxiciglobal

cytotoxchemicalmedianassaychemical
assaychemicalZ

),(logAC50),(logAC50
),(




Chemical Name CASRN Activity 

Dexamethasone 2392-39-4 Agonist 

4-Androstenedione 63-05-8 Agonist 

5a-Dihydrotestosterone 521-18-6 Agonist 

Methyl testosterone 58-18-4 Agonist 

Testosterone propionate 57-85-2 Agonist 

Flutamide 13311-84-7 Antagonist 

4-tert-Octylphenol 140-66-9 Antagonist 

Procymidone 32809-16-8 Antagonist 

Bisphenol A 80-05-7 Antagonist 

Vinclozolin 50471-44-8 Antagonist 

p,p'-DDE 72-55-9 Antagonist 

Hydroxyflutamide 52806-53-8 Antagonist 

Diethylstilbestrol 56-53-1 Antagonist  

Di-n-butyl-phthalate 84-74-2 Inactive 

Diethylhexyl phthalate 117-81-7 Inactive 

Atrazine 1912-24-9 Inactive 

Cyproterone acetate 427-51-0 SARM 

17--Estradiol 50-28-2 SARM 

Estrone 53-16-7 SARM 

Linuron 330-55-2 SARM 

Spironolactone 52-01-7 SARM 

Progesterone 57-83-0 SARM 

Fluoranthene 206-44-0 SARM 

Abbreviations: CASRN = Chemical Abstracts Service Registry Number; SARM = selective androgen receptor 

modulator, which has both agonist and antagonist activity. 

Testosterone Propionate (Reference AR Agonist) 

Vinclozolin (Reference AR Antagonist) 

Cyproterone Acetate (Reference SARM) 

Prochloraz (Conazole Fungicide,  

AR Antagonist In Vivo) 

• Quantitative structure–activity relationship (QSAR) models are needed to make predictions for 

chemicals that do not have in vitro assay data available. 

• We used the QikProp library of molecular descriptors and three machine learning approaches to 

build cross-validated QSAR models to predict AR pathway activity.  

‒ Support vector machine (SVM)  

‒ Linear discriminant analysis 

‒ Classification and regression tree 

• The best performing model was SVM. The five-fold cross-validated statistics are shown in  

Table 3. 

 

Table 3. Cross-Validated QSAR SVM Model Performance 

 

 

 

 

 

 

 

 

 

• This model was retrained on the results from the entire ToxCast library and used to make 

predictions for 30,000 chemicals in the broader chemical universe. Based on this preliminary 

model, 20.60% (6475/31428) of these chemicals were predicted to have antagonist activity 

against the AR pathway. However, this initial result is very likely an overestimate that may be 

confounded by very weak activity or cytotoxicity; further refinement of the model should improve 

specificity. 

 

 

 

QSAR Predictions of AR Pathway Activity  

Model Run Sensitivity Specificity BA 

1 0.71 0.76 0.74 

2 0.78 0.74 0.76 

3 0.71 0.80 0.75 

4 0.69 0.80 0.74 

5 0.69 0.77 0.73 

Average 0.72 0.77 0.74 

Abbreviations: BA = balanced accuracy; QSAR = quantitative structure–activity relationship; SVM = support 

vector machine. 

Abbreviation: AR = androgen receptor. 

 
a Colored arrow nodes (R1/R2) represent “receptors” with which a chemical can directly interact. Colored circles 

represent intermediate biological processes that are not directly observable. White stars represent the assays 

that measure activity at the biological nodes. Arrows represent transfer of information. Grey arrow nodes 

represent biological interference pathways (R3–R7) or technology-specific interference (one example shown, A1). 

Evaluation of Model Performance (cont’d) 

Receptor (Direct Molecular 
Interaction) 

Intermediate Process 

Assay 

AR agonist pathway 

Pseudo-receptor pathway 

AR antagonist pathway 


