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Abstract 

One of the top priorities currently being addressed by ICCVAM is the identification and 
validation of non-animal alternatives for skin sensitization testing. Although it is a complex 
process, the key biological events leading to skin sensitization have been well characterized 
in an adverse outcome pathway (AOP) proposed by OECD. Accordingly, ICCVAM is 
working to develop an integrated decision strategy based on the OECD AOP using in vitro, 
in chemico, and in silico information on skin sensitization. Data were compiled for 120 
chemicals tested in the local lymph node assay (LLNA), direct peptide reactivity assay 
(DPRA), human cell line activation test (h-CLAT), and KeratinoSens assay. Data for six 
physicochemical parameters (octanol:water partition coefficient, water solubility, vapor 
pressure, molecular weight, melting point, and boiling point) were collected and OECD 
QSAR Toolbox predictions for skin sensitization were calculated for each chemical. These 
data were combined into a variety of potential integrated decision strategies to predict LLNA 
outcomes using a training set of 94 chemicals and an external test set of 26 chemicals. 
Fifty-four models were built using multiple combinations of machine learning approaches 
and predictor variables. The seven models with the highest accuracy for predicting LLNA 
outcomes used the support vector machine (SVM) approach with different combinations of 
the predictor variables. The performance statistics of the SVM models were higher than any 
of the in vitro, in chemico, or in silico tests alone and higher than a simple test battery 
approach using these methods. These data suggest that computational approaches are 
promising tools to effectively integrate data sources to identify potential skin sensitizers 
without testing animals. (Data in poster abstract have been updated to reflect the most recent 
analyses.)  



Introduction 

• Allergic contact dermatitis (ACD) is a skin reaction, characterized by localized redness, 
swelling, blistering, or itching, that can develop after repeated direct contact with a skin 
allergen. 

• U.S. regulatory agencies establish hazard categories to determine appropriate labeling to 
warn consumers and workers of potential skin sensitization hazards. Data used to assign 
substances to appropriate hazard categories are generated using animal tests. 

• Since its inception, the Interagency Coordinating Committee on the Validation of 
Alternative Methods (ICCVAM) has given a high priority to replacing, reducing, and 
refining the use of animals for skin sensitization testing.  

• Skin sensitization is a complex process, and it is likely that no single non-animal test can 
replace animal use for this testing. A more promising approach involves integrating data 
from several non-animal methods using an integrated decision strategy (IDS).  

• This poster describes an IDS developed by ICCVAM that integrates existing non-animal 
skin sensitization data and physicochemical properties to identify potential skin 
sensitizers.  

Figure 1 Adverse Outcome Pathway for Skin Sensitization Produced by Substances That 
Covalently Bind to Proteins 

 
Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; LLNA = 

murine local lymph node assay. 

Adapted from OECD (2012). While the figure shows the assays aligned only to specific key events, a positive 
response in any of these assays requires completion of all prior events in the pathway. 



Study Design 

• The National Toxicology Program Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) and the ICCVAM Skin Sensitization Working 
Group compiled non-animal (in chemico and in vitro) test data and murine local lymph 
node assay (LLNA) outcomes (sensitizer or nonsensitizer) for 120 substances.  

• The in chemico and in vitro data were obtained from methods recommended by the 
European Union Reference Laboratory for Alternatives to Animal Testing (JRC 2013, 
JRC 2014, JRC 2015). The methods align with the adverse outcome pathway for skin 
sensitization (OECD 2012) (Figure 1). 

- The direct peptide reactivity assay (DPRA) measures covalent interaction with 
proteins (Key Event 1). The IDS used both categorical (sensitizer/nonsensitizer) and 
quantitative (average cysteine depletion, average lysine depletion, and average 
cysteine and lysine depletion) results.  

- The KeratinoSens™ (Givaudan) assay measures activation of cytoprotective genes in 
keratinocytes (Key Event 2). The IDS used categorical results. 

- The human cell line activation test (h-CLAT) measures activation and mobilization of 
dendritic cells in the skin (Key Event 3). The IDS used categorical results. 

• Additional data compiled included: 

- Six physicochemical properties that may impact skin absorption (Table 1) 
- Categorical in silico predictions of skin sensitization hazard produced using a 

read-across approach with QSAR Toolbox (OECD 2014) (see Strickland et al. 
Poster 109 [Abstract 422]) 

  



Table 1 Ranges of Physicochemical Properties for 120 Substances 

Physicochemical Property Range of Values 

Octanol:water partition coefficient -8.28 to 6.46a 

Water solubility (M) -6.39 to 1.92a 

Vapor pressure (mm Hg) -28.47 to 5.89a 

Melting point (°C) -148.5 to 288  

Boiling point (°C) -19.1 to 932.2  

Molecular weight (g/mol) 30.03 to 581.57  

a Range for base 10 logarithm of these measurements. 

• To predict LLNA outcomes, the in chemico, in vitro, and in silico data and 
physicochemical properties were integrated using the following methods: 

- Artificial neural network (ANN) 
- Naïve Bayes algorithm (NB) 
- Classification and regression tree (CART) 
- Linear discriminant analysis (LDA) 
- Logistic regression (LR) 
- Support vector machines (SVM) 
- Test battery approach  

Definition of Training and Test Sets 

• The database of 120 substances included 73% LLNA sensitizers and 27% LLNA 
nonsensitizers (Figure 2a).  

• The substances were divided into test and training sets with similar characteristics 
(Figures 2b and 2c). The training set was used to build models to predict LLNA outcome 
and the test set was used to test the models. 

  



Figure 2 Proportion of LLNA Sensitizers and Nonsensitizers   

Figure 2a Database (n=120) 

 
Figure 2b Training Set (n=94) 

 
Figure 2c Test Set (n=26) 

 

Analysis of Variable Importance  

• A random forest analysis was conducted to assess the relative importance of the 13 
variables (non-animal test data and physicochemical characteristics) for predicting LLNA 
outcome (Figure 3). 



- The importance of each independent variable to the model is assessed by measuring 
the increase in the prediction error (mean squared error) when each variable, in turn, 
is replaced with random noise while the others are left unchanged. 

• The most important variables were average lysine and cysteine depletion (Avg.Lys.Cys) 
and average cysteine depletion (Cys) from DPRA, the h-CLAT classification, and the 
QSAR Toolbox prediction.  

Figure 3 Ranking of Variable Importance by Random Forest Algorithm 

 
Abbreviations: Avg.Lys.Cys = average percent depletion for lysine and cysteine peptide; BP = boiling point; 

Cys = average percent depletion of cysteine peptide; DPRA = direct peptide reactivity assay;  
hCLAT = human cell line activation test; %IncMSE = percent increase in mean squared error;  
Keratino = KeratinoSens assay; LogP = log octanol:water partition coefficient; LogS = log water solubility; 
LogVP = log vapor pressure; Lys = average percent depletion of lysine peptide; MP = melting point;  
MW = molecular weight; OECD = QSAR Toolbox. 

Model Building 

• Six variable sets (Table 2) were defined using all (Set A) or subsets (Sets B–F) of the 13 
variables. The machine learning approaches were then applied to the training set of 94 
substances using the six variable sets.  

  



Table 2 Six Variable Sets Used to Build Models for Predicting LLNA Outcome 

Variable Set A Set B Set C Set D Set E Set F 

DPRA X   X X     

KeratinoSens X   X X X 

 h-CLAT X   X X X   

Toolbox X   X X X X 

Lys  X X   X     

Cys X X   X     

Avg.Lys.Cys X X   X X X 

Log P X X   X X X 

Log S  X X   X X X 

Log VP  X X     X X 

Melting Point X X     X X 

Boiling Point X X     X X 

Molecular Weight X X     X X 

Abbreviations: Avg.Lys.Cys = average depletion for lysine and cysteine peptides; Cys = average depletion of 
cysteine peptide; DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test;  
LLNA = murine local lymph node assay; Log P = log octanol:water partition coefficient; Log S = log water 
solubility; Log VP = log vapor pressure; Lys = average depletion of lysine peptide; Toolbox = QSAR 
Toolbox. 

Results 

• Table 3 shows performance statistics for the ability of the individual in chemico, in vitro, 
and in silico methods and two test battery approaches to predict LLNA outcomes for the 
entire 120-substance database. 

- Test Battery 1: If any test method classified the substance as a sensitizer 
(i.e., positive), the substance is classified as a sensitizer. 

- Test Battery 2: If two or more tests classified the substance as a sensitizer 
(i.e., positive), the substance is classified as a sensitizer. 

• Of the individual test methods, h-CLAT had the highest sensitivity (84%), QSAR 
Toolbox had the highest specificity (76%), and DPRA had the highest accuracy (79%).  



• Test Battery 1 had similar accuracy and higher sensitivity than the individual test 
methods, but much lower specificity. 

• Test Battery 2 had higher accuracy and sensitivity than the individual test methods, but 
similar specificity. 

Table 3 Performance of Individual Methods for Predicting LLNA Outcomes for 120 
Substancesa 

Method Sensitivity (%) Specificity (%) Accuracy (%) 

DPRA  83 70 79 

KeratinoSens  76 64 73 

h-CLAT  84 64 78 

Toolbox  77 76 77 

Battery 1 98 30 79 

Battery 2 91 64 83 

Abbreviations: DPRA = direct peptide reactivity assay; h-CLAT = human cell line activation test; 
LLNA = murine local lymph node assay; Toolbox = QSAR Toolbox 

a Full substance set: 87 LLNA sensitizers and 33 LLNA nonsensitizers. Bolded red text shows the highest 
values for each performance statistic. 

• Performance statistics for the ability of the machine learning methods to predict LLNA 
outcomes are shown in Table 4.   

• Based on overall accuracy for predicting LLNA outcomes, the modeling approaches 
ranked as follows: SVM > ANN > LR > LDA > CART = NB. 

 

Table 4 Performance of Machine Learning Methods Predicting LLNA Outcomes for 
Training and Test Setsa 

Approach Variable Setb Data Setc Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

SVM A and E Training 99 96 98 

SVM A and E Test 90 100 92 

ANN D Training 93 89 93 

ANN D Test 90 86 89 

LR A Training 93 85 90 

LR A Test 84 100 89 

LDA A Training 93 85 90 



LDA A Test 84 86 85 

CART A, B, D, E, F Training 87 89 87 

CART A, B, D, E, F Test 74 86 77 

NB F Training 87 89 87 

NB F Test 74 86 77 

Abbreviations: ANN = artificial neural network; NB = naïve Bayes algorithm; CART = classification and 
regression tree; LDA = linear discriminant analysis; LLNA = murine local lymph node assay; LR = logistic 
regression; SVM = support vector machines.  

a  Table reports statistics from the best performing variable set(s) for each machine learning approach. Bolded 
red text shows the best performing machine learning approach and variable sets. 

b Color codes match Table 2, which contains descriptions of the variable sets. 

c The training set of 94 substances contains 68 LLNA sensitizers and 26 LLNA nonsensitizers. The test set of 
26 substances contains 19 LLNA sensitizers and 7 LLNA nonsensitizers (Figure 2).  

Additional Analyses 

• After identifying the machine learning approach that produced the highest accuracy 
(Table 4), data inputs were optimized by testing additional SVM models with 18 
different variable sets (Table 5). 

• In these analyses, DPRA results were represented only by the average lysine and cysteine 
peptide depletion values (Avg.Lys.Cys), because this measurement was more highly 
correlated to LLNA outcomes than other DPRA measures (average cysteine peptide 
depletion, average lysine peptide depletion, and categorical DPRA result). 

• Table 5 provides the performance statistics for these analyses.  

- The variable set that included h-CLAT, QSAR Toolbox, and the six physicochemical 
properties (Variable Set 1) achieved the highest average accuracy for the test and 
training sets (97%).  

- The variable set with only physicochemical properties (Variable Set 8) produced the 
lowest accuracy: 73% for both test and training sets.  

- Of all the models tested, the seven SVM models with the highest accuracies (average 
of the training and test set statistics) were: 

 h-CLAT + QSAR Toolbox + 6 physicochemical properties (97%) (Variable Set 1) 
 DPRA + KeratinoSens + h-CLAT + QSAR Toolbox + Lys + Cys + Ave.Lys.Cys 

+ 6 physicochemical properties (95%) (Variable Set A, Table 4) 
 KeratinoSens + h-CLAT + QSAR Toolbox + Ave.Lys.Cys + 6 physicochemical 

properties (95%) (Variable Set E, Table 4) 



 KeratinoSens + QSAR Toolbox + Ave.Lys.Cys + 6 physicochemical properties 
(94%) (Variable Set 2) 

 KeratinoSens + h-CLAT + Ave.Lys.Cys + 6 physicochemical properties (92%) 
(Variable Set 3) 

 h-CLAT + QSAR Toolbox + Ave.Lys.Cys + 6 physicochemical properties (92%) 
(Variable Set 4) 

 KeratinoSens + h-CLAT +QSAR Toolbox + 6 physicochemical properties (92%) 
(Variable Set 5) 



Table 5 Classification Results for SVM Models with 18 Additional Variable Combinationsa 

No. Variable Set 
Sensitivity: 

Training Set 
(%) 

Specificity: 
Training Set 

(%) 

Accuracy: 
Training Set 

(%) 

Sensitivity: 
Test Set 

(%) 

Specificity: 
Test Set 

(%) 

Accuracy: 
Test Set 

(%) 

1 h-CLAT + Toolbox + 6 properties 97.1 96.2 96.8 94.7 100 96.2 

2 KeratinoSens + Toolbox + Avg.Lys.Cys + 6 
properties 98.5 100 98.9 84.2 100 88.5 

3 KeratinoSens + h-CLAT + Avg.Lys.Cys + 6 
properties 97.1 92.3 95.7 89.5 85.7 88.5 

4 h-CLAT + Toolbox + Avg.Lys.Cys + 6 properties 95.6 96.2 95.7 84.2 100 88.5 

5 KeratinoSens + h-CLAT + Toolbox + 6 properties 95.6 96.2 95.7 89.5 85.7 88.5 

6 h-CLAT + KeratinoSens + 6 properties 94.1 88.5 92.6 89.5 85.7 88.5 

7 h-CLAT + Avg.Lys.Cys + KeratinoSens + 
Toolbox + LogP 91.2 96.2 92.6 89.5 85.7 88.5 

8 h-CLAT + Avg.Lys.Cys + 6 properties 95.6 92.3 94.7 84.2 85.7 84.6 

9 Avg.Lys.Cys + Toolbox + 6 properties 91.2 100 93.6 78.9 100 84.6 

10 h-CLAT + 6 properties 86.8 88.5 87.2 89.5 85.7 88.5 

11 h-CLAT + Toolbox + LogP 80.9 92.3 84.0 84.2 100 88.5 

12 Avg.Lys.Cys + KeratinoSens + 6 properties 92.6 96.2 93.6 73.7 85.7 76.9 

13 Avg.Lys.Cys + KeratinoSens + Toolbox + LogP 88.2 92.3 89.4 78.9 85.7 80.8 

14 Avg.Lys.Cys + 6 properties 85.3 100 89.4 73.7 100 80.8 

15 Toolbox + 6 properties 89.7 80.8 87.2 84.2 71.4 80.8 

16 KeratinoSens + Toolbox + 6 properties 91.2 84.6 89.4 73.7 85.7 76.9 

17 KeratinoSens + 6 properties 79.4 88.5 81.9 73.7 85.7 76.9 



No. Variable Set 
Sensitivity: 

Training Set 
(%) 

Specificity: 
Training Set 

(%) 

Accuracy: 
Training Set 

(%) 

Sensitivity: 
Test Set 

(%) 

Specificity: 
Test Set 

(%) 

Accuracy: 
Test Set 

(%) 

18 6 properties only 67.6 88.5 73.4 73.3 71.4 73.1 

Abbreviations: 6 properties = molecular weight, log octanol:water partition coefficient, log water solubility, log vapor pressure, melting point, and boiling point; 
Avg.Lys.Cys = average depletion for lysine and cysteine peptides from the direct peptide reactivity assay; h-CLAT = human cell line activation test; logP = log 
octanol:water partition coefficient; No. = number; Toolbox = QSAR Toolbox. 

a Bold red text shows the best model (Variable Set 1) based on the average accuracy of the test and training sets. The models with the next highest accuracies 
(Variable Sets 2–5) are in red text but not bolded. 

b The training set of 94 substances contains 68 LLNA sensitizers and 26 LLNA nonsensitizers. The test set of 26 substances contains 19 LLNA sensitizers and 7 
LLNA nonsensitizers (Figure 2).  

 



Matheson et al. ICCVAM IDS for Skin Sensitization   February 2015 
NICEATM SOT 2015 Poster 
 
Misclassified Substances 

• The training set substances misclassified by the seven SVM models with the highest 
accuracies are shown in Table 6. The results from the individual in chemico/in vitro/in 
silico test methods are also shown for reference. 

- None of the false negatives were prehaptens (n = 2), which must oxidize to produce 
skin sensitization. 

- The three models with the highest accuracies correctly classified the 12 prohaptens, 
which must be metabolized to produce skin sensitization.  

- h-CLAT correctly classified more misclassified substances (6) than any of the other 
test methods (3-4 substances). 

• The test set substances misclassified by the seven SVM models with the highest 
accuracies are shown in Table 7.  

- None of the false negatives were prehaptens (n = 1). 
- The three models with the highest accuracies correctly classified the four prohaptens.  
- h-CLAT and OECD Toolbox correctly classified more misclassified substances (5) 

than any of the other test methods (2-4 substances). 
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Table 6 Misclassified Substances for the Seven SVM Models with the Highest Accuracy – Training Seta 

Test Method or Modelb 
3-

Phenoxypro-
piononitrile 

2-
Acetylcyclo-

hexanone 
Pyridinec Nonanoic 

acid 

3,4-
Dihydro-
coumarinc 

Benzyl-
idene 

acetone 
Xylene 

2-
Hydroxy-

ethyl 
acrylate 

Eugenolc 

LLNA  NEG NEG POS POS POS POS POS POS POS 

DPRA (79%) 1 1 0 0 1 1 0 1 1 

KeratinoSens (73%) 0 1 0 0 0 1 0 1 0 

h-CLAT (78%) 1 1 1 1 1 1 0 1 1 

Toolbox (77%) 1 0 0 0 1 0 0 0 1 

h-CLAT + Toolbox + 6 
properties (97%) POS NEG POS NEG POS NEG POS POS POS 

DPRA + KeratinoSens + h-
CLAT + Toolbox + Lys + Cys + 
Ave.Lys.Cys + 6 properties 
(95%) 

POS NEG POS NEG POS POS POS POS POS 

KeratinoSens + h-CLAT + 
Toolbox + Ave.Lys.Cys + 6 
properties (95%) 

POS NEG POS NEG POS POS POS POS POS 

KeratinoSens + Toolbox + 
Ave.Lys.Cys + 6 properties 
(94%) 

NEG NEG POS NA NEG POS POS POS POS 

KeratinoSens + h-CLAT + 
Ave.Lys.Cys + 6 properties 
(92%) 

POS POS POS NEG POS POS POS POS NEG 
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h-CLAT + Toolbox + 
Ave.Lys.Cys + 6 properties 
(92%) 

POS NEG NEG NEG POS POS NEG POS POS 

KeratinoSens + h-CLAT + 
Toolbox + 6 properties (92%) POS NEG POS NEG POS NEG POS NEG POS 

Abbreviations: 6 properties = molecular weight, log octanol:water partition coefficient, log water solubility, log vapor pressure, melting point, boiling point; 
Avg.Lys.Cys = average depletion for lysine and cysteine peptides from the DPRA; Cys = average depletion of cysteine peptide; DPRA = direct peptide 
reactivity assay categorical response; h-CLAT = human cell line activation test; LLNA = murine local lymph node assay; Lys = average depletion of lysine 
peptide from the DPRA; NEG = negative; POS = positive; SVM = support vector machines; Toolbox = QSAR Toolbox.   

a Misclassifications are shaded in gray. 

b Parentheses show the accuracy for the test methods for all 120 substances and the average accuracy of the test and training sets for the SVM models.  

c Pyridine, 3,4-dihydrocoumarin, and eugenol are prohaptens. 

.  

Table 7 Misclassified Substances for the Seven SVM Models with the Highest Accuracy – Test Seta 

Test Method or Modelb Benzoic 
acid 

Tartaric 
acid Resorcinolc Undecylenic 

acid 
3-Amino-
phenolc Linalool Coumarin 

LLNA  NEG NEG POS POS POS POS POS 

DPRA (79%) 1 0 0 1 0 0 0 

KeratinoSens (73%) 0 0 0 1 0 0 1 

h-CLAT (78%) 0 0 1 0 1 1 0 

Toolbox (77%) 0 0 1 0 1 1 0 
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h-CLAT + Toolbox + 6 properties (97%) NEG NEG POS POS POS POS NEG 

DPRA + KeratinoSens + h-CLAT + Toolbox + 
Lys + Cys + Ave.Lys.Cys + 6 properties (95%) 

NEG NEG POS NEG POS POS NEG 

KeratinoSens + h-CLAT + Toolbox + Ave.Lys.Cys 
+ 6 properties (95%) 

NEG NEG POS NEG POS POS NEG 

KeratinoSens + Toolbox + Ave.Lys.Cys + 6 
properties (94%) 

NEG NEG NEG POS NEG POS NEG 

KeratinoSens + h-CLAT + Ave.Lys.Cys + 6 
properties (92%) POS NEG POS POS POS NEG NEG 

h-CLAT + Toolbox + Ave.Lys.Cys + 6 properties 
(92%) 

NEG NEG NEG POS NEG POS NEG 

KeratinoSens + h-CLAT + Toolbox + 6 properties 
(92%) 

NEG POS POS NEG POS POS NEG 

Abbreviations: 6 properties = molecular weight, log octanol:water partition coefficient, log water solubility, log vapor pressure, melting point, boiling point; 
Avg.Lys.Cys = average depletion for lysine and cysteine peptides from the DPRA; Cys = average depletion of cysteine peptide; DPRA = direct peptide 
reactivity assay categorical response; h-CLAT = human cell line activation test; LLNA = murine local lymph node assay; Lys = average depletion of lysine 
peptide from the DPRA; NEG = negative; POS = positive; SVM = support vector machines; Toolbox = QSAR Toolbox.  

a Misclassifications are shaded in gray. 

b Parentheses show the accuracy for the test methods for all 120 substances and the average accuracy of the test and training sets for the SVM models.  

c Resorcinol and 3-aminophenol are prohaptens.  
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Conclusions  

• Machine learning approaches provided superior predictions (accuracy ≥ 92% for the 
highest performing models) to individual assay methods (accuracy ≤ 79%) and test 
batteries (accuracy ≤ 83%) and achieved a better balance between sensitivity and 
specificity for prediction of LLNA outcomes. 

• Of the machine learning approaches, SVM produced the highest accuracy in predicting 
LLNA outcomes, followed by ANN, LR, LDA, and CART = NB (Table 4). 

• Seven SVM models with different variable sets produced accuracy ≥ 92% (average of 
training and test sets) for predicting LLNA outcomes.  

- The combination of h-CLAT + QSAR Toolbox + six physicochemical properties and 
SVM achieved the highest accuracy (97% for average of training and test sets)  
(Table 5).  

- Three additional models used a combination of any two in chemico/in vitro methods 
(DPRA, h-CLAT, or KeratinoSens) with the in silico read-across approach and the six 
physicochemical properties. These approaches would save resources because they 
would not require all of the in chemico/in vitro results. 

- No prehaptens were misclassified. The three SVM models with the highest accuracy 
correctly classified the prohaptens. 

• The in chemico/in vitro/in silico methods captured important information and were more 
discriminative than physicochemical properties (Table 5). 

• Future work will explore the use of continuous variables for h-CLAT and KeratinoSens 
and the development of models to predict skin sensitization potency.  
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