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Abstract 

Quantitative structure-property relationship (QSPR) models were developed for the prediction of 
six physicochemical properties of environmental chemicals: octanol–water partition coefficient 
(log P), water solubility (log S), boiling point (BP), melting point (MP), vapor pressure (VP), and 
bioconcentration factor (BCF). Models were developed using simple binary molecular 
fingerprints and four approaches with differing complexity: multiple linear regression, random 
forest regression, partial least squares regression, and support vector regression (SVR). To obtain 
reliable and robust regression models with high prediction performance, genetic algorithms (GA) 
were employed to select the most information-rich subset of fingerprint bits. Predictions from the 
various models were tested against a validation set, and all four approaches exhibited satisfactory 
predictive results, with SVR outperforming the others. BP was the best-predicted property, with 
a correlation coefficient (R2) of 0.95 between the estimated values and experimental data on the 
validation set while MP was the most poorly predicted property with an R2 of 0.84. The statistics 
for other properties were intermediate between MP and BP with R2 equal to 0.94, 0.93, 0.92 and 
0.86 for log S, log P, VP and BCF, respectively. The prediction results for all properties were 
superior to those from Estimation Program Interface (EPI) Suite (R2 values ranged from 0.63 to 
0.94), a widely used tool for property prediction. This study demonstrates that (1) molecular 
fingerprints are useful descriptors, (2) GA is an efficient feature selection tool from which 
selected descriptors can effectively model these properties, and (3) simple methods give 
comparable results to more complicated methods.  

Introduction 

• Current tools for testing the biological activity and toxicity of chemicals are time-consuming 
and costly. Thus, only a fraction of these chemicals have been fully characterized for their 
potential hazard and risks to both human health and the environment.  

• In vitro and in silico approaches are being developed as more efficient tools for chemical 
hazard characterization and prioritization. One of these approaches is in silico estimation of 
physicochemical properties. 

• This study presents novel methods using simple binary molecular fingerprints for the 
estimation of six physicochemical properties of environmental chemicals:  
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- Octanol–water partition coefficient (log P) 
- Water solubility (log S) 
- Boiling point (BP) 
- Melting point (MP) 
- Vapor pressure (VP) 
- Bioconcentration factor (BCF) 

The goal of this project is to produce models that can be easily integrated with ToxCast in vitro 
high-throughput screening assays and that adhere to internationally accepted validation 
principles defined by the Organization for Economic Co-operation and Development 
(OECD 2004). 

Characteristics of the Chemical Set 

• Experimentally measured physicochemical properties of a structurally diverse set of organic 
environmental chemicals were obtained from EPI Suite (EPA 2012 and EPI Suite Data). 
These chemicals represent a wide range of use classes, including industrial compounds, 
pharmaceuticals, pesticides, and food additives. 

• Figure 1 shows that values for the physicochemical properties of the chemical set are 
normally or nearly normally distributed. 

- Log P (Figure 1a) ranges from -4.27 to 8.54 log units with a median of 2.19. 
- Log S (Figure 1b) ranges from -9.70 to 1.58 log units (mol/L) with a median of -2.38. 
- BP (Figure 1c) ranges from -88.60 to 548.00 C° with a median of 189.20 C°. 
- MP (Figure 1d) ranges from -199.00 to 385.00 C° with a median of 85.00 C°. 
- VP (Figure 1e) ranges from -13.68 to 5.89 log units (mmHg) with a median of -2.11. 
- BCF (Figure 1f) ranges from -0.35 to 5.97 log units with a median of 1.73. 
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Figure 1. Data Distribution of Properties of Chemicals 

Figure 1a. Partition Coefficient (log P)  

 
Figure 1b. Aqueous Solubility (log S) 
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Figure 1c. Boiling Point (BP) 

 
Figure 1d. Melting Point (MP) 
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Figure 1e. Data Distribution of Vapor Pressure (log VP) 

 
Figure 1f. Bioconcentration Factor (log BCF) 
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Definition of Training and Test Sets 

• The chemicals were randomly partitioned into training sets (80% of the chemicals) to build 
the models and test sets (20% of the chemicals) to validate the predictive power of each 
model. 

• Table 1 lists the summary statistics for physicochemical properties of the training and test 
sets. 

• Table 2 gives the correlation coefficient (r) among the physicochemical properties, which is 
calculated according to the following formula:  

 
where pk and pl represent different physicochemical properties and n is the number of 
chemicals in each pair of properties. 

Table 1. Summary Statistics for Training and Test Sets 

Property Data Seta Minimum Maximum Mean Median Standard 
Deviation 

Log P Training (11991) -5.40 11.29 1.97 1.91 1.89 

Log P Test (2998) -4.64 9.29 2.00 1.97 1.90 

Log S Training (1828) -12.06 1.58 -2.56 -2.38 2.15 

Log S Test (457) -11.25 1.57 -2.66 -2.36 2.25 

Boiling Point Training (4492) -88.60 548.00 188.99 189.00 85.08 

Boiling Point Test (1123) -84.70 519.00 190.21 191.00 85.53 

Melting Point Training (7578) -199.00 385.00 84.18 85.00 98.56 

Melting Point Test (1895) -196.00 376.00 84.41 85.00 100.41 

Log VP Training (2279) -13.68 5.89 -2.06 -1.27 3.57 

Log VP Test (570) -13.52 5.67 -2.18 -1.40 3.64 

Log BCF Training (530) -0.35 5.97 1.90 1.72 1.26 

Log BCF Test (133) -0.30 5.82 1.92 1.75 1.27 

Abbreviations: log BCF = log of bioconcentration factor; log P = octanol–water partition coefficient; log S = water 
solubility; log VP = log of vapor pressure. 

a Numbers in parentheses are the numbers of chemicals in each set. 
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Table 2. Correlation Coefficients (r) among Molecular Weight (MW) and the 

Physicochemical Properties 

 MW log P log S MP BP log VP log BCF  

MW 1 0.256 -0.648 0.460 0.475 -0.721 0.367 

Log P  1 -0.873 -0.043 0.365 -0.387 0.830 

Log S   1 -0.285 -0.444 0.564 -0.825 

MP    1 0.733 -0.833 0.163 

BP     1 -0.959 0.355 

Log VP      1 -0.351 

Log BCF       1 

Abbreviations: log BCF = log of bioconcentration factor; log P = octanol–water partition coefficient; log S = water 
solubility; log VP = log of vapor pressure; MW = molecular weight. 

Development of QSPR Models 

• Molecular fingerprints, a series of binary bits that represent the presence (1) or absence (0) of 
particular substructures in a molecule, were used as independent variables.  

• Genetic algorithm (GA; Wegner et al. 2003) was employed to select the most information-
rich subset of variables for obtaining reliable and robust regression models. 

• Quantitative structure-property relationship (QSPR) models were developed using four 
approaches with differing complexity in ascending order: multiple linear regression (MLR), 
partial least squares regression (PLSR), random forest regression (RFR), and support vector 
regression (SVR).  

• Mathematical processing for data standardization, multivariate regression analysis, and 
statistical model building were performed using the statistical software package R (version 
3.0.2) (R Development Core Team 2008). GA, MLR, RFR, PLSR and SVR were 
implemented by the packages subselect, stats, randomForest, pls and e1071, respectively. 

• The performance of each QSPR model is evaluated by establishing a correlation between the 
experimental and calculated values with a set of parameters: 

- R2 and RMSE are the coefficient of determination and root mean squared error for 
training or test set with n chemicals. 

- Q2 and RMSEcv are the coefficient of determination and root mean squared error for 10-
fold cross validation (CV) with v chemicals not included in the CV model building when 
the fold of chemicals are left out (Hughes et al 2008). 

7 
 



Zang et al. Prediction of Physicochemical Properties  March 2015 
NICEATM SOT 2015 Poster 
 

 

• In the above equations,  and  are the measured and predicted values, respectively, for a 

specific physicochemical property of chemical i, and is the mean value for that property of 
all n chemicals in the data set. 

ip ip̂

p

Correlation Between Estimated and Measured Values 

• The property of a chemical calculated from a set of molecular fingerprints can be described 
by a general equation: 

 

• In this equation: 

- Property is the value of the physicochemical property 
- cj is the contribution coefficient, which is determined by regression analysis 
- fj is the binary bit of the jth fingerprint, with presence or absence denoted by the numeric 

value 1 or 0 

• The quality of the model depends heavily on the number of selected fingerprint bits, and the 
predictive performance of the models is enhanced remarkably when an appropriate number 
of fingerprint bits were selected from GA (Figure 2). Results show that the prediction for the 
training set is improved continuously with increasing feature number. In contrast, the test set 
followed a different pattern, i.e., the RMSE value initially decreased, attained a minimum at 
a medium number of bits, and then gradually increased afterwards.  
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- For log P, the modeling statistics are not sensitive to the bit number, and the model 
performance does not vary considerably with different subsets of fingerprint bits for the 
test set (Figure 2a). 

- For log S, the lowest prediction errors occurred on the models with moderate complexity 
around 250 and 300 bits (Figure 2b). 
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Figure 2. Relationship Between Model Complexity and Prediction Errors  

Figure 2a. Log P 

 
Figure 2b. Log S 

 
Abbreviations: log P = octanol–water partition coefficient; log S = aqueous solubility; MLR = multiple linear 

regression; RF = random forest; RMSE = root mean squared error; SVR = support vector regression. 
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• The validation results show a significant correlation between the estimated and measured 
values in the test set. 

- For log P, R2 of 0.925 corresponded to a minimum RMSE of 0.516 log units for test set 
when using 600 fingerprint bits selected by GA, compared to R2 of 0.980 for training set 
(Figure 3a). 

- For log S, R2 of 0.935 corresponded to a minimum RMSE of 0.559 log units for test set 
when using 250 fingerprint bits selected by GA, compared to R2 of 0.955 for training set 
(Figure 3b). 
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Figure 3. Estimated Values Versus Experimental Values for Training and Test Sets  

Figure 3a. Log P 

 
Figure 3b. Log S 

 
Abbreviations: log P = octanol–water partition coefficient; log S = water solubility; R2 = coefficient of 

determination; RMSE = root mean squared error. 
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Relationship Between Number of Principal Components and Standard Error of Prediction 

• The number of significant principal components (PCs) for the PLS algorithm was determined 
using 10-fold cross-validation (CV) procedure on the training set (Zang et al. 2011). The 
relation of the standard error of prediction (SEP) versus the number of PCs is displayed in 
Figure 4. 

- The gray lines were produced by repeating this procedure 100 times. The black line 
represents the lowest SEP value from a single 10-fold CV. The dashed vertical lines 
represent the optimal number of PCs and the dashed horizontal lines indicate the SEP 
value for the test set when the optimal PCs are applied. 

- For the all-descriptor model, initially SEP decreases with PCs, and then starts to rebound 
after a certain point when the model begins to simulate the noise as the complexity of the 
model increases (Figure 4a). For the 600-bit model, the SEP decreases monotonically 
and gradually approaches a stable value, and the model with 42 PCs gave a minimum 
RMSE (Figure 4b). 
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Figure 4. Relationship Between Number of Principal Components and Standard Error of 

Prediction for Log P Models  

Figure 4a. All Fingerprint Bits  

 
Figure 4b. 250 Fingerprint bits Selected by GA 

 
Abbreviation: GA = genetic algorithm; log P = octanol–water partition coefficient; SEP = standard error of 

prediction. 

Black = single of 10-fold CV; Gray =100 repetitions of 10-fold CV. 
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Applicability Domain 

• An applicability domain (AD) is a chemical structural or physicochemical space of the 
training set. 

• The AD of the models was assessed using a leverage-based approach that compares a 
predefined threshold to the distance of query compounds from a defined point within the 
descriptor space. The approach is based on the covariance matrix derived from center-scaled 
variables. The threshold is three times the average of the leverage that corresponds to m/n, 
the ratio of m, the number of model variables, to n, the number of training compounds. 

• Figure 5 displays the relationship between leverage and standardized residuals (William plot 
[Sahigara et al. 2012]). 

- For log P, 39 out of 2998 (1.30%) test chemicals are located outside the AD (Figure 5a). 
- For log S, 18 out of 457 (3.94%) test chemicals are located outside the AD (Figure 5b).  
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Figure 5. William Plot for Training and Test Setsa  

Figure 5a. Log P 

 

Figure 5b. Log S 

 
Abbreviations: log P = octanol–water partition coefficient; log S = water solubility 

a Black points represent members of the training set, red points represent members of the test set.  
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Comparison of the Models 

• SVR substantially outperformed the other three approaches in predicting log P, log BCF, BP 
and MP with a low error rate (Table 3). However, performance of SVR was similar to the 
other three approaches for predicting log S and log VP. 

• Table 4 lists regression statistics of best performing models for both 10-fold cross validation 
and test set. 
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Table 3. Comparison of the Best Models from the Four Methods 

Property Method Data Set MLR PLSR RF SVRa 

Log P R2 Training 0.904 0.905 0.899 0.980 

Log P R2 Test 0.891 0.893 0.897 0.925 

Log P RMSE Training 0.558 0.556 0.532 0.262 

Log P RMSE Test 0.612 0.611 0.548 0.516 

Log S R2 Training 0.942 0.944 0.919 0.955 

Log S R2 Test 0.933 0.932 0.930 0.935 

Log S RMSE Training 0.502 0.500 0.570 0.444 

Log S RMSE Test 0.568 0.569 0.545 0.559 

Log BCF R2 Training 0.945 0.945 0.834 0.942 

Log BCF R2 Test 0.856 0.859 0.835 0.875 

Log BCF RMSE Training 0.288 0.288 0.458 0.294 

Log BCF RMSE Test 0.455 0.446 0.452 0.442 

BP R2 Training 0.927 0.927 0.931 0.971 

BP R2 Test 0.922 0.923 0.938 0.953 

BP RMSE Training 22.15 22.16 20.80 14.39 

BP RMSE Test 23.33 23.30 19.99 18.17 

MP R2 Training 0.808 0.808 0.796 0.917 

MP R2 Test 0.811 0.812 0.816 0.840 

MP RMSE Training 38.80 38.81 38.29 26.50 

MP RMSE Test 39.47 39.45 37.20 36.75 

Log VP R2 Training 0.956 0.956 0.924 0.963 

Log VP R2 Test 0.912 0.914 0.917 0.920 

Log VP RMSE Training 0.732 0.736 0.916 0.566 

Log VP RMSE Test 1.039 1.023 1.015 1.012 

Abbreviations: BP = boiling point; log BCF = log of bioconcentration factor; log P = octanol–water partition 
coefficient; log S = water solubility; log VP = log of vapor pressure; MLR = multiple linear regression; 
MP = melting point; PLSR = partial least squares regression; R2 = coefficient of determination; RF = random 
forest; RMSE = root mean squared error; SVR = support vector regression. 

a Highlighting indicates superior performance of SVR in predicting these properties. 
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Table 4. Best Performing Models for Each Property 

Property Method Variables 
(FP bits) 

Q2 for 10-
fold CV RMSEcv R2 for test RMSEtest 

Log P SVR 600 0.926 0.495 0.924 0.518 

Log S SVR 250 0.918 0.617 0.927 0.580 

Log BCF SVR 200 0.853 0.514 0.861 0.444 

BP SVR 250 0.929 19.78 0.935 21.12 

MP SVR 300 0.825 37.84 0.833 37.41 

Log VP SVR 350 0.907 1.074 0.902 1.092 

Abbreviations: BP = boiling point; CV = cross-validation; FP bits = fingerprint bits; log BCF = log of 
bioconcentration factor; log P = octanol–water partition coefficient; log S = water solubility; log VP = log of 

vapor pressure; MP = melting point; Q
2
 = correlation coefficient; R

2
 = coefficient of determination; 

RMSEcv = root mean squared error for cross-validation; RMSEtest = root mean squared error for test set; 
SVR = support vector regression.  

Conclusions 

• This study demonstrates that: 

- Molecular fingerprints are useful descriptors for modeling the six properties. 
- GA is an efficient feature selection tool from which selected descriptors can effectively 

model these properties. 
- Simple methods such as MLR give similar results to more complicated methods under 

optimal conditions for modeling log S and log VP. 
- There are multiple ways for deriving regression models with similar statistics. 

• When compared to other procedures currently in use, our methods present better accuracy for 
a wider range of chemicals of interest, are highly stable and reliable, and are in line with the 
validation principles put forth by the OECD. They thus have broad applicability for property 
estimation of many classes of compounds. 
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