
• The chemicals were randomly partitioned into training sets (80% of the 

chemicals) to build the models and test sets (20% of the chemicals) to validate 

the predictive power of each model. 

• Table 1 lists the summary statistics for physicochemical properties of the training 

and test sets. 

• Table 2 gives the correlation coefficient (r) among the physicochemical 

properties, which is calculated according to the following formula: 
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where pk and pl represent different physicochemical properties and n is the 

number of chemicals in each pair of properties. 

Table 1. Summary Statistics for Training and Test Sets 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: log BCF = log of bioconcentration factor; log P = octanol–water partition coefficient; log S = water 

solubility; log VP = log of vapor pressure. 

a Numbers in parentheses refer to the numbers of chemicals in each set. 

 

Table 2. Correlation Coefficients (r) among Molecular Weight (MW) and 

the Physicochemical Properties 
 

 

 

 

 

 

 

 

Abbreviations: log BCF = log of bioconcentration factor; log P = octanol–water partition coefficient; log S = water 

solubility; log VP = log of vapor pressure; MW = molecular weight. 

Figure 2. Relationship Between Model Complexity and Prediction Errors 

 

 

 

 

 

 

 

 

 

Abbreviations: log P = octanol–water partition coefficient; log S = aqueous solubility; MLR = multiple linear 

regression; RF = random forest; RMSE = root mean squared error; SVR = support vector regression. 

• The validation results show a significant correlation between the estimated and 

measured values in the test set. 

 For log P, R2 of 0.925 corresponded to a minimum RMSE of 0.516 log units 

for test set when using 600 fingerprint bits selected by GA, compared to R2 of 

0.980 for training set (Figure 3a). 

 For log S, R2 of 0.935 corresponded to a minimum RMSE of 0.559 log units 

for test set when using 250 fingerprint bits selected by GA, compared to R2 of 

0.955 for training set (Figure 3b). 

 

Figure 3. Estimated Values Versus Experimental Values  

for Training and Test Sets  

 

 

 

 

 

 

 

 

 

Abbreviations: log P = octanol–water partition coefficient; log S = water solubility; R2 = coefficient of 

determination; RMSE = root mean squared error. 

 

 

Quantitative structure-property relationship (QSPR) models were developed for the 

prediction of six physicochemical properties of environmental chemicals: octanol–water 

partition coefficient (log P), water solubility (log S), boiling point (BP), melting point (MP), 

vapor pressure (VP) and bioconcentration factor (BCF). Models were developed using 

simple binary molecular fingerprints and four approaches with differing complexity: multiple 

linear regression, random forest regression, partial least squares regression, and support 

vector regression (SVR). To obtain reliable and robust regression models with high 

prediction performance, genetic algorithms (GA) were employed to select the most 

information-rich subset of fingerprint bits. Predictions from the various models were tested 

against a validation set, and all four approaches exhibited satisfactory predictive results, with 

SVR outperforming the others. BP was the best-predicted property, with a correlation 

coefficient (R2) of 0.95 between the estimated values and experimental data on the 

validation set while MP was the most poorly predicted property with an R2 of 0.84. The 

statistics for other properties were intermediate between MP and BP with R2 equal to 0.94, 

0.93, 0.92 and 0.86 for log S, log P, VP and BCF, respectively. The prediction results for all 

properties were superior to those from Estimation Program Interface (EPI) Suite (R2 values 

ranged from 0.63 to 0.94), a widely used tool for property prediction. This study 

demonstrates that (1) molecular fingerprints are useful descriptors, (2) GA is an efficient 

feature selection tool from which selected descriptors can effectively model these properties, 

and (3) simple methods give comparable results to more complicated methods.  
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• This study demonstrates that: 

 Molecular fingerprints are useful descriptors for modeling the six properties. 

 GA is an efficient feature selection tool from which selected descriptors can 

effectively model these properties. 

 Simple methods such as MLR give similar results to more complicated 

methods under optimal conditions for modeling log S and log VP. 

 There are multiple ways for deriving regression models with similar statistics. 

• When compared to other procedures currently in use, our methods present better 

accuracy for a wider range of chemicals of interest, are highly stable and reliable, 

and are in line with the validation principles put forth by the OECD. They thus 

have broad applicability for property estimation of many classes of compounds. 
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Acknowledgements 

EPA. 2012. Estimation Program Interface Suite™ for Microsoft Windows. Washington, DC: U.S. 

Environmental Protection Agency. Available: http://www.epa.gov/oppt/exposure/pubs/episuite.htm.  

Hughes LD, Palmer DS, Nigsch F, Mitchell JBO. 2008. Why are some properties more difficult to 

predict than others? A study of QSPR models of solubility, melting point, and log P. J Chem Inf Model 

48(1): 220–232.   

OECD. 2004. OECD Principles for the Validation, for Regulatory Purposes, of (Quantitative) 

Structure–Activity Relationship Models [Internet]. Available: http://www.oecd.org/env/ehs/risk-

assessment/37849783.pdf.  

R Development Core Team. 2008. R: A Language and Environment for Statistical Computing (ISBN 3-

900051-07-0). Vienna, Austria:R Foundation for Statistical Computing. Available: www.R-project.org.  

Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. 2012. Comparison of 

different approaches to define the applicability domain of QSAR models. Molecules 17: 4791–4810. 

SRC, Inc. EPI Suite Data. Available: http://esc.syrres.com/interkow/EPiSuiteData.htm.  

Wegner JK, Zell A. 2003. Prediction of aqueous solubility and partition coefficient optimized by a 

genetic algorithm based descriptor selection method. J Chem Inf Comput Sci 43(3): 1077–1084.   

Zang Q, Keire DA, Wood RD, Buhse LF, Moore CMV, Nasr M, et al. 2011. Determination of 

galactosamine impurities in heparin samples by multivariate regression analysis of their 1H NMR 

spectra. Anal Bioanal Chem 399(2): 635–649.  

References  

Figure 1.  Data Distribution of Properties of 

Chemicals 

• Current tools for testing the biological activity and toxicity of chemicals are  

time-consuming and costly. Thus, only a fraction of these chemicals have been 

fully characterized for their potential hazard and risks to both human health and 

the environment.  

• In vitro and in silico approaches are being developed as more efficient tools for 

chemical hazard characterization and prioritization. One of these approaches is in 

silico estimation of physicochemical properties. 

• This study presents novel methods using simple binary molecular fingerprints for 

the estimation of six physicochemical properties of environmental chemicals:  

 Octanol–water partition coefficient (log P) 

 Water solubility (log S) 

 Boiling point (BP) 

 Melting point (MP) 

 Vapor pressure (VP) 

 Bioconcentration factor (BCF) 

• The goal of this project is to produce models that can be easily integrated with 

ToxCast in vitro high-throughput screening assays and that adhere to 

internationally accepted validation principles defined by the Organisation for 

Economic Co-operation and Development (OECD 2004). 

 

Introduction 

• Experimentally measured physicochemical properties of a structurally diverse set 

of organic environmental chemicals were obtained from EPI Suite (EPA 2012 and 

EPI Suite Data). These chemicals represent a wide range of use classes, 

including industrial compounds, pharmaceuticals, pesticides, and food additives. 

• Figure 1 shows that values for the physicochemical properties of the chemical 

set are normally or nearly normally distributed. 

 Log P (Figure 1a) ranges from -4.27 to 8.54 log units with a median of 2.19. 

 Log S (Figure 1b) ranges from -9.70 to 1.58 log units (mol/L) with a median 

of -2.38. 

 BP (Figure 1c) ranges from -88.60 to 548.00 C° with a median of 189.20 C°. 

 MP (Figure 1d) ranges from -199.00 to 385.00 C° with a median of 85.00 C°. 

 VP (Figure 1e) ranges from -13.68 to 5.89 log units (mmHg) with a median of 

-2.11. 

 BCF (Figure 1f) ranges from -0.35 to 5.97 log units with a median of 1.73. 

 

Characteristics of the Chemical Set 

• Molecular fingerprints, a series of binary bits that represent the presence (1) or 

absence (0) of particular substructures in a molecule, were used as independent 

variables.  

• Genetic algorithm (GA; Wegner et al. 2003) was employed to select the most 

information-rich subset of variables for obtaining reliable and robust regression 

models. 

• Quantitative structure–property relationship (QSPR) models were developed 

using four approaches with differing complexity in ascending order: multiple linear 

regression (MLR), partial least squares regression (PLSR), random forest 

regression (RFR), and support vector regression (SVR).  

• Mathematical processing for data standardization, multivariate regression 

analysis, and statistical model building were performed using the statistical 

software package R (version 3.0.2)(R Development Core Team 2008). GA, MLR, 

RFR, PLSR and SVR were implemented by the packages subselect, stats, 

randomForest, pls and e1071, respectively. 

• The performance of each QSPR model is evaluated by establishing a correlation 

between the experimental and calculated values with a set of parameters: 

– R2 and RMSE are the coefficient of determination and root mean squared 

error for training or test set with n chemicals. 

– Q2 and RMSEcv are the coefficient of determination and root mean squared 

error for 10-fold cross validation (CV) with v chemicals not included in the CV 

model building when the fold of chemicals are left out (Hughes et al. 2008). 
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In the above equations, pi and    are the measured and predicted values, 

respectively, for a specific physicochemical property of chemical i, and    is the mean 

value for that property of all n chemicals in the data set. 

 

Development of QSPR Models 

• SVR substantially outperformed the other three approaches in predicting log P, log 

BCF, BP and MP with a low error rate (Table 3). However, performance of SVR 

was similar to the other three approaches for predicting log S and log VP. 

 

Table 3. Comparison of the Best Models from the Four Methods  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: BP = boiling point; log BCF = log of bioconcentration factor; log P = octanol–water partition 

coefficient; log S = water solubility; log VP = log of vapor pressure; MLR = multiple linear regression; MP = 

melting point; PLSR = partial least squares regression; R2 = coefficient of determination; RF = random forest; 

RMSE = root mean squared error; SVR = support vector regression. 

a Highlighting indicates superior performance of SVR in predicting these properties.  

 

 

 

Comparison of the Models 

• The number of significant principal components (PCs) for the PLS algorithm was 

determined using 10-fold cross-validation (CV) procedure on the training set 

(Zang et al. 2011). The relation of the standard error of prediction (SEP) versus 

the number of PCs is displayed in Figure 4. 

 The gray lines were produced by repeating this procedure 100 times. The 

black line represents the lowest SEP value from a single 10-fold CV. The 

dashed vertical lines represent the optimal number of PCs and the dashed 

horizontal lines indicate the SEP value for the test set when the optimal PCs 

are applied. 

 For the all-descriptor model, initially SEP decreases with PCs, and then starts 

to rebound after a certain point when the model begins to simulate the noise 

as the complexity of the model increases (Figure 4a). For the 600-bit model, 

the SEP decreases monotonically and gradually approaches a stable value, 

and the model with 42 PCs gave a minimum RMSE (Figure 4b). 

 

Figure 4. Relationship Between Number of Principal Components and 

Standard Error of Prediction for Log P Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation: GA = genetic algorithm; log P = octanol–water partition coefficient; SEP = standard error of 

prediction. 

Black = single of 10-fold CV; Gray =100 repetitions of 10-fold CV. 

 

 

 

Relationship Between Number of Principal 

Components and Standard Error of Prediction 

Property Method Data Set MLR PLSR RF SVR 

Log P R2 Training 0.904 0.905 0.899 0.980 

Log P R2 Test 0.891 0.893 0.897 0.925 

Log P RMSE Training 0.558 0.556 0.532 0.262 

Log P RMSE Test 0.612 0.611 0.548 0.516 

Log S R2 Training 0.942 0.944 0.919 0.955 

Log S R2 Test 0.933 0.932 0.930 0.935 

Log S RMSE Training 0.502 0.500 0.570 0.444 

Log S RMSE Test 0.568 0.569 0.545 0.559 

Log BCF R2 Training 0.945 0.945 0.834 0.942 

Log BCF R2 Test 0.856 0.859 0.835 0.875 

Log BCF RMSE Training 0.288 0.288 0.458 0.294 

Log BCF RMSE Test 0.455 0.446 0.452 0.442 

BP R2 Training 0.927 0.927 0.931 0.971 

BP R2 Test 0.922 0.923 0.938 0.953 

BP RMSE Training 22.15 22.16 20.80 14.39 

BP RMSE Test 23.33 23.30 19.99 18.17 

MP R2 Training 0.808 0.808 0.796 0.917 

MP R2 Test 0.811 0.812 0.816 0.840 

MP RMSE Training 38.80 38.81 38.29 26.50 

MP RMSE Test 39.47 39.45 37.20 36.75 

Log VP R2 Training 0.956 0.956 0.924 0.963 

Log VP R2 Test 0.912 0.914 0.917 0.920 

Log VP RMSE Training 0.732 0.736 0.916 0.566 

Log VP RMSE Test 1.039 1.023 1.015 1.012 

Figure 4a. All Fingerprint Bits  Figure 4b. 250 Fingerprint Bits 

Selected by GA 

Figure 3a. Log P Figure 3b. Log S 

• The property of a chemical calculated from a set of molecular fingerprints can be 

described by a general equation: 

 

 (6) 

In equation (6): 

 Property is the value of the physicochemical property 

 cj is the contribution coefficient, which is determined by regression analysis 

 fj is the binary bit of the jth fingerprint, with presence or absence denoted by 

the numeric value 1 or 0 

• The quality of the model depends heavily on the number of selected fingerprint 

bits, and the predictive performance of the models is enhanced remarkably when 

an appropriate number of fingerprint bits were selected from GA (Figure 2). 

Results show that the prediction for the training set is improved continuously with 

increasing feature number. In contrast, the test set followed a different pattern, 

i.e., the RMSE value initially decreased, attained a minimum at a medium number 

of bits, and then gradually increased afterwards. 

 For log P, the modeling statistics are not sensitive to the bit number, and the 

model performance does not vary considerably with different subsets of 

fingerprint bits for the test set (Figure 2a). 

 For log S, the lowest prediction errors occurred on the models with moderate 

complexity around 250 and 300 bits (Figure 2b). 

Correlation Between Estimated and  
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  MW log P log S MP BP log VP log BCF  

MW 1 0.256 -0.648 0.460 0.475 -0.721 0.367 

Log P   1 -0.873 -0.043 0.365 -0.387 0.830 

Log S     1 -0.285 -0.444 0.564 -0.825 

MP       1 0.733 -0.833 0.163 

BP         1 -0.959 0.355 

Log VP           1 -0.351 

Log BCF             1 

Property Data Seta Minimum Maximum Mean Median 
Standard 

Deviation 

Log P Training (11991) -5.40 11.29 1.97 1.91 1.89 

Log P Test (2998) -4.64 9.29 2.00 1.97 1.90 

Log S Training (1828) -12.06 1.58 -2.56 -2.38 2.15 

Log S Test (457) -11.25 1.57 -2.66 -2.36 2.25 

Boiling Point Training (4492) -88.60 548.00 188.99 189.00 85.08 

Boiling Point Test (1123) -84.70 519.00 190.21 191.00 85.53 

Melting Point Training (7578) -199.00 385.00 84.18 85.00 98.56 

Melting Point Test (1895) -196.00 376.00 84.41 85.00 100.41 

Log VP Training (2279) -13.68 5.89 -2.06 -1.27 3.57 

Log VP Test (570) -13.52 5.67 -2.18 -1.40 3.64 

Log BCF Training (530) -0.35 5.97 1.90 1.72 1.26 

Log BCF Test (133) -0.30 5.82 1.92 1.75 1.27 

Definition of Training and Test Sets 

Figure 1a. 

Partition Coefficient (log P)  

Figure 1b. 

Aqueous Solubility (log S) 
Figure 1c. Boiling Point (BP) 

Figure 1d. Melting Point (MP) 
Figure 1e. 

Vapor Pressure (log VP) 

Figure 1f.  

Bioconcentration Factor (log BCF) 

ip̂

p

Correlation Between Estimated and  

Measured Values (cont’d) 
• An applicability domain (AD) is a chemical structural or physicochemical space of 

the training set. 

• The AD of the models was assessed using a leverage-based approach that 

compares a predefined threshold to the distance of query compounds from a 

defined point within the descriptor space. The approach is based on the 

covariance matrix derived from center-scaled variables. The threshold is three 

times the average of the leverage that corresponds to m/n, the ratio of m, the 

number of model variables, to n, the number of training compounds. 

• Figure 5 displays the relationship between leverage and standardized residuals 

(William plot [Sahigara et al. 2012]). 

 For log P, 39 out of 2998 (1.30%) test chemicals are located outside the AD 

(Figure 5a). 

 For log S, 18 out of 457 (3.94%) test chemicals are located outside the AD 

(Figure 5b). 

Figure 5. William Plot for Training and Test Setsa 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: log P = octanol–water partition coefficient; log S = water solubility. 

a Black points represent members of the training set, red points represent members of the test set.  

Figure 5a. Log P Figure 5b. Log S 

Applicability Domain 

• Table 4 lists regression statistics of best performing models for both 10-fold cross 

validation and test set. 

 

Table 4. Best Performing Models for Each Property  

 

 

 

 

 

 

 

 

Abbreviations: BP = boiling point; CV = cross-validation; FP bits = fingerprint bits; log BCF = log of 

bioconcentration factor; log P = octanol–water partition coefficient; log S = water solubility; log VP = log of vapor 

pressure; MP = melting point; Q2 = correlation coefficient; R2 = coefficient of determination; RMSEcv = root mean 

squared error for cross-validation; RMSEtest = root mean squared error for test set; SVR = support vector 

regression.  

 

 

 

Comparison of the Models (cont’d) 

Property Method 
Variables 

(FP bits) 

Q2 for  

10-fold CV 
RMSEcv 

R2 for 

Test 
RMSEtest 

Log P SVR 600 0.926 0.495 0.924 0.518 

Log S SVR 250 0.918 0.617 0.927 0.580 

Log BCF SVR 200 0.853 0.514 0.861 0.444 

BP SVR 250 0.929 19.78 0.935 21.12 

MP SVR 300 0.825 37.84 0.833 37.41 

Log VP SVR 350 0.907 1.074 0.902 1.092 

Figure 2a. Log P  Figure 2b. Log S 


