Integrating Alternative Methods within a Regulatory Framework to Replace Animals in Inhalation Toxicity Testing

David Allen

Integrated Laboratory Systems, Inc.

Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

SOT 2016
Outline

• Overview of the regulatory landscape
• Incorporating alternative methods within the current regulatory framework
• Using AOPs to design integrated approaches for inhalation toxicity testing
NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), organized as an office under the NTP Division, part of NIEHS

ILS provides technical support for NICEATM under an NIEHS contract

- ICCVAM support
- Tox 21 validation support
- International harmonization efforts
Disclaimer

• The views expressed in this presentation are those of the author and do not necessarily represent the views of any Federal Agency.

• No conflict of interest
Inhalation Toxicology

- Need acute and repeated-dose inhalation toxicology studies
 - Complexity of the respiratory system and the diversity of local and systemic responses.
 - Often, lungs are the main route of exposure but not the main target (toxicity manifested in other organs; e.g., liver, spleen, kidney).

- Exposure to airborne particles is gaining more and more importance due to the ubiquitous application of these particles in the field of industry, pharmacy and in daily life.

- Products applied in form of sprays or powders considered as particularly harmful.
 - Industry and electrical, consumer, and medical applications.
 - Ex: nanosprays for shoe care, cleaning agents, antibacterial sprays, or during technical processing of plastics

- Hazard evaluation requires extensive, technically complex and expensive inhalation toxicology studies that are usually generated in animal experiments
Identifying Pulmonary Toxicants

• Human data are typically limited to accidental exposure.
 – Unpredictable; actual exposure uncertain
 – Pre-existing conditions?
 – Not representative of broader population

• Animal studies
 – EPA and OECD test guidelines
 – Large number of animals and $$$

• In vitro models
 – Many are human cell-based
 – Amenable to higher throughput evaluation

• In silico models
 – QSAR; read across
<table>
<thead>
<tr>
<th></th>
<th>EPA OPPTS 870.1300</th>
<th>OECD TG 403</th>
<th>OECD TG 436</th>
<th>Draft OECD TG433</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>2 mg/L</td>
<td>20000 ppm (gas)</td>
<td>20000 ppm (gas)</td>
<td>5000 ppm (gas)</td>
</tr>
<tr>
<td>Duration</td>
<td>4 hrs</td>
<td>20 mg/L (vapor)</td>
<td>20 mg/L (vapor)</td>
<td>5 mg/L (dust/mist)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mg/L (aerosol)</td>
<td>5 mg/L (dust/mist)</td>
<td>2 mg/L (aerosol)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 hrs</td>
<td>4 hrs</td>
<td>4 hrs</td>
</tr>
<tr>
<td># Dose Groups/n</td>
<td>3/n=5 per sex</td>
<td>Traditional: 3/n=5 per sex</td>
<td>≥1/n=3 per sex (or n=6 of more susceptible sex)</td>
<td>≥1/n=5 (most susceptible sex based on sighting study)</td>
</tr>
<tr>
<td>Recommended route</td>
<td>Nose only</td>
<td>Nose only</td>
<td>Nose only</td>
<td>Nose only</td>
</tr>
<tr>
<td>(NOTE: not required)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation period</td>
<td>14 days</td>
<td>14 days</td>
<td>14 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Observations</td>
<td>Daily clinical obs; weekly body weight; TOD; gross necropsy (optional histo)</td>
<td>Daily clinical obs; body weight on d0, 1, 3, 7, weekly; TOD; gross necropsy</td>
<td>Daily clinical obs; body weight on d0, 1, 3, 7, weekly; TOD; gross necropsy</td>
<td>Daily clinical obs; body weight on d0, 1, 3, 7, weekly; TOD; gross necropsy (optional histo); Evident toxicity</td>
</tr>
<tr>
<td>MMAD range</td>
<td>1-4 µM</td>
<td>1-4 µM</td>
<td>1-4 µM</td>
<td>1-4 µM</td>
</tr>
<tr>
<td>Notes</td>
<td>Covers entire range of the concentration-mortality relationship – LC50 point estimate</td>
<td>Covers entire range of the concentration-mortality relationship – LC50 point estimate; C x t can derive AEGLs; Better estimates of toxicity at upper and lower exposure concentration boundaries</td>
<td>Refinement and reduction – serial steps/fixed concentrations; LC50 range estimate</td>
<td>Refinement alternative by including evident toxicity TG not adopted yet</td>
</tr>
</tbody>
</table>
Acute Inhalation Toxicity Hazard Categories

<table>
<thead>
<tr>
<th>GHS & OSHA</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DANGER</td>
<td>DANGER</td>
<td>DANGER</td>
<td>WARNING</td>
</tr>
<tr>
<td>Gases (ppm/V)</td>
<td>≤ 100</td>
<td>>100 ≤ 500</td>
<td>>500 ≤ 2500</td>
<td>>2500 ≤ 5000</td>
</tr>
<tr>
<td>Vapors (mg/L)</td>
<td>≤ 0.5</td>
<td>>0.5 ≤ 2.0</td>
<td>>2.0 ≤ 10</td>
<td>>10 ≤ 20</td>
</tr>
<tr>
<td>Dusts and Mists (mg/L)</td>
<td>≤ 0.05</td>
<td>>0.05 ≤ 0.5</td>
<td>>0.5 ≤ 1.0</td>
<td>>1.0 ≤ 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPA</th>
<th>Category I</th>
<th>Category II</th>
<th>Category III</th>
<th>Category IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Inhalation</td>
<td>≤ 0.05 mg/L</td>
<td>>0.05 thru 0.5 mg/L</td>
<td>>0.5 thru 2 mg/L</td>
<td>> 2 mg/L</td>
</tr>
</tbody>
</table>

- Precautionary labeling based on hazard categories
 - First aid statement in case of accidental exposure
 - Identifies the precautions necessary to avoid exposure; personal protective equipment (PPE)
Sub-acute and Sub-chronic Inhalation Toxicity

- 28-Day Study (OECD): Determine the NOEL and any toxic effects associated with continuous or repeated (28-day) exposure to a test substance
- Provides information on target organs and possibilities of accumulation
- 6 hour/day exposure in rats for 28 days
- Recommend nose only for aerosols
- 3 concentrations, at least 5 rats/group/sex
- Can be used for quantitative risk assessment (in absence of 90-day study)
- Dose selection for 90-day
- Limit concentration
 - OECD: 20000 ppm (gas); 20 mg/L (vapor); 5 mg/L (aerosol)

- 90-Day Study (EPA & OECD): Determine the NOEL and any toxic effects associated with continuous or repeated (90-day) exposure to a test substance
- Provides information on target organs and possibilities of accumulation
- 6 hour/day exposure in rats for 90 days
- Recommend nose only for aerosols
- 3 concentrations, at least 10 rats/group/sex
- Can be used for quantitative risk assessment
- Dose selection for chronic study
- Limit concentration
 - EPA: 1 mg/L
 - OECD: 20000 ppm (gas); 20 mg/L (vapor); 5 mg/L (aerosol)
Possibilities for Waiving a Study

- Mixtures or formulated products
 - Substantially similar to well-characterized mixtures/products

- Severe local irritation and corrosivity

- Low volatility
 - Non-volatile actives not aerosolized or otherwise made inhalable as a gas or vapor.
 - Not typically for formulations - ultimately diluted/applied for potential inhalation exposure

- Particle size
Impact of Particle Size

• Inhalable Fraction
 – The fraction of total airborne particles that enter the body through the nose and/or mouth during breathing (≤ 100 µm)
 • Relevant to health effects anywhere in the respiratory tract and systemic effects

• Thoracic Fraction
 – Subfraction of inhalable particles that can penetrate into the tracheo-alveolar region (< 30 µm)
 • Important for asthma, bronchitis, and lung cancer

• Respirable Fraction
 – Subfraction of inhalable particles that penetrate into the alveolar region (≤ 10 µm)
 • Chronic respiratory diseases: e.g., emphysema

• Non-inhalable aerosol: ≥99% of the particles are >100 µm in diameter

• Friable material – attrition study?

Slide courtesy of Jon Hotchkiss
Moving to Non-Animal Approaches

• Need fast and efficient screening tests

• Versatility, simplicity and still do the job
 – Realistic in simulating the human organ of interest
 • One challenge for inhalation is the fact that the target cell population (and therefore the cell types used in the in vitro model) changes along the length of the respiratory tract
 – Able to reproduce findings of in vivo studies

• Can create diseased models

• Impact on the 3R’s
Simple In Vitro Systems

- Monolayer cultures/co-cultures
- Primary cells and cell lines
- Homo- or hetero-geneity
- Variable life-span in culture
- Phenotypic differentiation varies

Primary human large airway epithelial cells (cellntec.com)

A549 cell (micro.magnet.fsu.edu)
3D Airway Epithelium Models

- Typically from primary cells
- Can be grown from normal or diseased tissues
- Harvested from multiple anatomical sites
- Human relevant tissue structure and cellular morphology
- Barrier function and mucociliary responses maintained
Microfluidic Systems

- Complex 3 dimensional multi-cellular models
- Interactions among multiple tissue types
- Translocation and distal target effects
- Diseased models
- Models based on sensitive subpopulations

from Harvard Magazine, Jan-Feb 2016

Wyss Institute at Harvard University
www.kirkstall.org
• Everything we know about generating/controlling/monitoring in vivo exposures is directly applicable to in vitro exposure system, **plus**:

 - May get better estimates of deposited dose of aerosols and vapors/gases
 - Can evaluate basic TK endpoints (e.g., parent concentration and any locally formed metabolites in the basolateral media)
Exposures – System Feature Needs

Physics of Delivery
- Deposition of aerosol
- Accurate/Precise/Reproducible Delivery
 - To the chamber
 - To the cells
- Sampling Capability

Protocol Design
- # of replicates / doses needed
- QA/QC compatibility
- Containment of Hazards

Biological Suitability
- Size of insert must generate sufficient sample
- Flexibility
- Maintenance of Cells – long term ALI culture
 - Sterility
Adverse Outcome Pathway (AOP)

Exposure → Molecular Interaction → Organelle Effect → Cellular Effect → Organ Effect → Individual Effect → Population Effect

Slide courtesy of Donna Mendrick, FDA-NCTR
A Model of Success: OECD AOP for Skin Sensitization

Chemical Structure & Properties

Molecular Initiating Event

Cellular Response

Organ Response

Organism Response

Metabolism Penetration

Electrophilic substance

Covalent interaction with skin proteins

Dendritic Cells (DCs)

Keratinocytes responses

Adverse Outcome

Key Event 1

Key Event 2

Key Event 3

Key Event 4

DPRA

h-CLAT

LLNA

Inflammation upon challenge with allergen

Induction of inflammatory cytokines and surface molecules

Mobilisation of DCs

Key Event 3

Dendritic Cells (DCs)

Key Event 4

T-cell proliferation

Histocompatibility complexes presentation by DCs

Activation of T cells

Proliferation of activated T-cells

DPRA

h-CLAT

LLNA

KeratinSens

Tuesday PM Workshop Session (CC 208): Safety Assessment of Topically Exposed Cosmetic Ingredients: Lessons Learned

Abstract Number 2533: Kleinstreuer N, Skin Sensitization Testing Strategy Evaluation

Tuesday PM Poster Session, Abstract Number 2202: Strickland et al., Multivariate Models for Prediction of Human Skin Sensitization Hazard

Poster Board Number P132

http://www.oecd.org/chemicalsafety/testing/seriesontestingandassessmentpublication sbynumber.htm
CNT and Lung Fibrosis: Multiple Mechanisms

Direct effects on fibroblasts
- CNT
- Fibroblasts
 - ROS
 - p38 MAPK
 - TGF-β
 - PDGF
 - Other growth factors
 - Kinase receptors (PDGF, TGF-β, EGF)
 - Smad
 - ERK 1/2
 - Collagen production
 - Fibrosis

Indirect effects via macrophages
- CNT
- Macrophages
 - Frustrated phagocytosis
 - ROS
 - NADPH oxidase
 - Inflammasome
 - IL-1β
 - TNF-α
 - NF-κB
 - PDGF
 - TGF-β
 - OPN
 - Fibrosis

Indirect effects via epithelial cells
- CNT
- Epithelial cells
 - Epithelial barrier damage
 - Inflammasome
 - MAPK
 - NF-κB
 - IL-1β
 - IL-18
 - IL-8
 - IL-6
 - EMT
 - TGF-β
 - PDGF
 - Fibroblasts
 - Fibrosis

Vietti et al. Particle and Fibre Toxicology (2016) 13:11
AOP for CNT and Lung Fibrosis

Toxicant

Macromolecular Interactions

Cellular Responses

Tissue Level

Organ Response

Fibroblast

p38 MAPK

ROS

NF-κB

NADPH oxidase

ROS

NF-κB

MACROPHAGE

inflammasome

IL-1β

inflammasome

IL-18

MAP kinase

NF-κB

Tissue Level Organ Response

Response

ECM accumulation

Lung fibrosis

Cellular Responses

Smad

Fibroblast

P, D, Cp

TGF-β

ERK 1/2

PDGF

IL-8

MAP kinase

Smad

EMT

T, Cp

Physico-chemical properties:
solubility, rigidity,
length, diameter,
surface, size,
reactivity, purity

Vietti et al. Particle and Fibre Toxicology (2016) 13:11
Inhaled Molecular Cellular Organ Individual Population Mixture Initiating Responses

Events

Acute airway Acetylcholine release inflammation

Redox reactions and/or by airway nerves

altered redox state

Formation of oxidation/nitration/sulfotolysis products in lung lining fluid

Amplification by influx and activation of neutrophils and eosinophils

Cellular

Responses

Acetylcholine release by airway nerves

Cellular release of histamine or other mediators

Airway epithelial injury

Altered cell signaling: airway epithelial, inflammatory and antigen presenting cells

Organ

Responses

Acute airway inflammation

↑ Airway smooth muscle contractility and sensitivity to agonists

Persistent airway inflammation/remodeling

Impaired lung development

Adjuvant effects on allergic sensitization

Individual

Responses

Reversible airflow obstruction

Respiratory symptoms

Induction of atopy/asthma

Population

Responses

↑ Respiratory morbidity:

Asthma-related Hospital admissions/Emergency department visits

↑ Incidence of asthma

Airway Hyperresponsiveness

from Buckley and Farraj (2015). Toxicology 335:85–94
AOP: Air Pollution Mixtures and Cardiovasc. Outcomes

Inhaled Mixture

Molecular Initiating Events

Cellular Responses

Organ Responses

Individual Responses

Population Responses

PM

O\textsubscript{3}

Oxidant-induced lung injury and inflammation resulting in systemic inflammation and oxidative stress

Reduced NO bioavailability in vascular cells:

- Decreased eNOS

- Altered eNOS function

- Disruption of cell signaling

- Destruction of NO by superoxide

- Vasoconstriction/Coronary vasospasm

- Vascular inflammation

- Platelet aggregation/thrombosis

- Smooth muscle cell proliferation/vascular remodeling

Endothelial Dysfunction

Altered endothelial-dependent vasodilation

- ↑ Blood pressure

- Myocardial ischemia

- Vascular inflammation

- Platelet aggregation/thrombosis

- Smooth muscle cell proliferation/vascular remodeling

- Atherosclerosis

- ↑ Plaque/Atheroma

- Myocardial infarction

- Atherosclerosis

- Cardiovascular morbidity/mortality:

- Hospital admissions/Emergency department visits

- Disease progression

from Buckley and Farraj (2015). Toxicology 335:85–94
The Future is Bright

• Alternatives for inhalation toxicology are being developed and applied
 – In vitro systems recapitulate much of respiratory biology
 – In silico approaches leverage existing information to predict outcomes
 – Lung on a chip models may one day provide a complete solution

• AOPs can guide research to focus on relevant mechanisms of action or investigate underlined knowledge gaps

• AOPs can be used to systematically develop IATAs
 – Short-term goal: Limit the necessity of subsequent in vivo testing
 – Long-term goal: Stand alone to identify pulmonary toxicants without in vivo testing
Thank You!

• Jon Hotchkiss, Dow Chemical Company
• Amy Clippinger, PETA International Science Consortium
• John Redden, EPA-OPP
• Bill Polk, Olympus (formerly ILS-NICEATM)
• Warren Casey, NICEATM