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Introduction 

• U.S. (7 U.S.C. 136, 110 Stat 1613) and international regulations require that certain chemicals be 
tested to detect activity that could potentially affect the function of the estrogen, androgen, and 
thyroid hormone pathways. As many as 30,000 chemicals may require such testing, with several 
hundred new chemicals being added to this total each year (EPA 2011). 

• The U.S. Environmental Protection Agency (EPA) ToxCast chemical research program (Dix et al. 
2007; Judson et al. 2010) and the Tox21 U.S. federal partnership (Tice et al. 2013) include multiple 
in vitro high-throughput screening (HTS) assays that measure the effects of chemicals on endocrine 
hormone pathways. 

• Following an approach used to model the estrogen receptor pathway (EPA and NICEATM 2014), 
we constructed a mathematical model to predict chemically induced androgen receptor (AR) activity 
based on nine ToxCast/Tox21 HTS assays that map to the AR pathway.  

• We used this model to train and test quantitative structure–activity relationship (QSAR) models for 
both binary classification and potency prediction for putative AR antagonists. We then made AR 
activity predictions for a larger chemical set. 
 

High-Throughput Screening Data 

• Nine AR pathway assays (Table 1) were used to generate data on 1855 chemicals during ToxCast 
Phases I and II. 

• All concentration–response assay data were analyzed using the ToxCast data analysis pipeline 
(http://actor.epa.gov/), which automates the processes of baseline correction, normalization, curve-
fitting, hit-calling, and AC50 (half-maximal activity) determination, and detects a variety of 
potential confounders (annotated as “caution flags”).  

 
 

http://actor.epa.gov/
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Table 1 Assays Used in the AR Pathway Model 

ID Assay Name Source Gene Species Type 

A1 NVS human AR Novascreen AR Homo sapiens 
Cell-free biochemical 
radioligand receptor 

binding 

A2 NVS chimpanzee AR Novascreen AR P. troglodytes 
Cell-free biochemical 
radioligand receptor 

binding 

A3 OT_AR_ARSRC1_0480 Odyssey Thera AR;SRC Homo sapiens AR-SRC1 cofactor 
recruitment 

A4 OT_AR_ARSRC1_0960 Odyssey Thera AR;SRC Homo sapiens AR-SRC1 cofactor 
recruitment 

A5 ATG_AR_TRANS Attagene AR Homo sapiens RNA TA reporter 
gene 

A6 Tox21_AR_BLA_Agonist_ratio NCGC AR Homo sapiens Beta-lactamase TA 
reporter gene 

A7 Tox21_AR_LUC_MDAKB2_A
gonist NCGC AR Homo sapiens Luciferase TA 

reporter gene 

A8 Tox21_AR_BLA_Antagonist_r
atio NCGC AR Homo sapiens Beta-lactamase TA 

reporter gene 

A9 Tox21_AR_LUC_MDAKB2_A
ntagonist NCGC AR Homo sapiens Luciferase TA 

reporter gene 

 
Abbreviations: AR = androgen receptor; NCGC = National Institutes of Health Chemical Genomics Center;  

SRC = c-Src tyrosine kinase; TA = transactivation. 

AR Pathway Model 

• Figure 1 presents a model of the AR pathway and shows how the assays listed in Table 1 map to the 
pathway. The model is based on the molecular events that typically occur in a receptor-mediated 
response. The assays listed in Table 1 are represented in Figure 1 as white stars. 

• The model assumes that a chemical that interacts with the AR will bind in either or both of the 
agonist or antagonist conformations, triggering activity in the appropriate pathway. 

• The agonist pathway starts at the interaction of a chemical with a nuclear AR (receptor node R1), 
and continues through dimerization (node N1), translocation, co-factor recruitment (N2), DNA 
binding (N3), mRNA transcription (N4), and protein translation (N5). The antagonist pathway is 
similarly represented by receptor node R2 and nodes N7, N8, N9, and N10. Dimerization and DNA 
binding are the only processes not assessed by one or more of the assays listed in Table 1. 
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• Potential assay interference pathways are shown in Figure 1 as “pseudo-receptors” (gray arrow 
nodes).  

Figure 1 AR Pathway Model 

 

Abbreviations: AR = androgen receptor 

Colored arrow nodes (R1/R2) represent “receptors” with which a chemical can directly interact. Colored circles represent 
intermediate biological processes that are not directly observable. White stars represent the assays that measure activity 
at the biological nodes. Arrows represent transfer of information. Gray arrow nodes represent biological interference 
pathways (R3-R7) or technology-specific interference (one example shown, A1). 

Chemical Interactions with AR Pathway Model 

• Examples of how a specific chemical may interact with the AR pathway are shown in Figure 2, in 
which pink highlighting represents the expected activity from a true agonist (Figure 2a), a true 
antagonist (Figure 2b), or a chemical causing assay interference (Figure 2c). 
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Figure 2 Examples of Chemical Interactions with AR Pathway Model 

 
Abbreviations: AR = androgen receptor 

 

Activity of ToxCast Chemicals in the AR Pathway Model 

• The activity of a chemical against the AR pathway is represented by a simple linear model that 
calculates area under the curve (AUC).  

• Figure 3 is a calibration curve to aid interpretation of the AUC distributions, showing for example 
that an AUC of 0.1 is equivalent to an AC50 against the AR pathway at ~100 µM. 

• The AR pathway model AUC scores were previously shown to be 96% predictive against a set of 23 
reference chemicals, and correctly identified environmental compounds with known anti-androgenic 
activity in vivo (Kleinstreuer et al. 2015).  

Figure 3 Calibration Curve for AR Pathway Model Scores  

 
Abbreviations: AC50 = half maximal activity concentration; AR = androgen receptor; AUC = area under the curve. 
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QSAR Predictions of AR Antagonist Activity  

• We focused on building QSAR models for AR antagonism because anti-androgenic activity is the 

response of highest environmental relevance and concern. 

• For construction of the QSAR models, chemicals with an AUC antagonist score greater than or equal 

to 0.01 (~AC50 ≤ 1mM) were considered positives (Table 2, color-coded amber), and chemicals with 

AUC antagonist scores less than 0.01 were considered negatives (Table 2, color-coded blue). 

Table 2  Data Set Used for the QSAR Model 

AUC Antagonist Score AUC ≥ 0.1 0.1 > AUC ≥ 0.01 0.01 > AUC > 0  AUC = 0 

Number of chemicals 132 96 34 1593 

 
• The chemicals in each score class in Table 2 were partitioned into a training set containing 1243 

chemicals (67%) and a test set containing 612 chemicals (33%) to build the models and validate their 

predictive power, respectively.  

• Training and test sets were randomly selected from the larger chemical set while maintaining the 

distribution of positives and negatives. 

Molecular Descriptors and Structural Fingerprints 

• The molecular structures of the chemicals were represented in SMILES (Simplified Molecular Input 

Line-Entry System) format.  

• SMILES strings were converted into three-dimensional (3D) structures using Molecular Operating 

Environment (MOE).  

• 188 molecular descriptors were obtained from MOE. 

Binary Classification for AR Data 

Variable Selection  

• An algorithm called recursive feature elimination (RFE) is used for variable/feature selection. RFE 

selects model variables by repeatedly considering smaller and smaller sets of molecular descriptors 

and evaluating cross-validated binary prediction performance against the training set.  
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• Figure 4 depicts the relationship between the number of variables (molecular descriptors) and the 

cross-validation accuracy. The optimal subset of molecular descriptors is 41, the number of 

descriptors yielding the highest accuracy (0.873) 

Figure 4 Feature Selection of MOE Descriptors 

 
Classification Modeling and Performance  

• We developed a series of binary QSAR models to classify the chemicals as active or inactive 

according to their anti-androgenic activity. Random forest (RF) and support vector machine (SVM) 

approaches were used to classify the chemicals based on the most significant molecular descriptors 

from RFE. 

• We investigated the influence of various methods for handling the imbalanced data: 

o Cost-sensitive algorithm (considers misclassification costs based on the data distribution)  

o Oversampling (repeat sampling of positives)  

o Undersampling (sub-sampling of negatives) 

• An ideal classification model should maximize accuracy on both sides of the active and inactive 

classes. G-mean, the geometric mean of sensitivity and specificity, was used to emphasize the joint 

performance of sensitivity and specificity. 
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• Table 3 lists the classification results according to the four performance metrics, i.e., sensitivity, 

specificity, accuracy, and G-mean. 

Table 3 Prediction Performance from SVM and RF Models 

SVM Model 

Model/ 
Imbalance 
Handling 

Data Set TP FN SE (%) TN FP SP (%) Accuracy 
(%) 

G-mean 
(%) 

Cost-
sensitive 

Training 139 12 92.1 834 220 79.1 80.7 85.4 

Test 60 15 80.0 390 140 73.6 74.4 76.7 

Under-
sampling 

Training 142 9 94.0 142 9 94.0 94.0 94.0 

Test 61 14 81.3 378 152 71.3 72.6 76.1 

Over-
sampling 

Training 995 59 94.4 834 220 79.1 80.0 86.4 

Test 60 15 80.0 388 142 73.2 74.1 76.5 

 

RF Model 

Model/ 
Imbalance 
Handling 

Data Set TP FN SE (%) TN FP SP (%) Accuracy 
(%) 

G-mean 
(%) 

Cost-
sensitive 

Training 149 2 98.7 1054 0 100 99.8 99.3 

Test 10 65 13.3 523 7 98.7 88.1 36.2 

Under-
sampling 

Training 151 0 100 151 0 100 100 100 

Test 62 13 82.7 362 168 68.3 70.1 75.2 

Over-
sampling 

Training 1054 0 100 1052 2 99.8 99.9 99.9 

Test 20 55 26.7 504 26 95.1 86.6 50.4 

Abbreviations: FN = false negative (active chemicals); FP = false positive (inactive chemicals); RF = random forest; SE = 
sensitivity (active chemicals); SP = specificity (inactive chemicals); SVM = support vector machines; TN = true negative 
(inactive chemicals); TP = true positive (active chemicals). 
 

• A receiver operating characteristic (ROC) curve can help visualize the performance of a classifier by 

providing a graphical representation of the trade-off between the true positive rate (y-axis) and the 

false positive rate (x-axis). Figure 5 shows the ROC curves for SVM classifier models based on 

cost-sensitive modeling, oversampling, and undersampling. 
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• The best binary classification model was used to make predictions for ~30,000 chemicals in the 

broader chemical universe eligible for assessment in the EPA Endocrine Disruptor Screening 

Program. Based on this preliminary model, 20.60% (6475/31428) of these chemicals were predicted 

to have some AR antagonist activity. However, this initial result is very likely an overestimate that 

may be confounded by very weak activity or cytotoxicity. Further refinement of the model should 

improve specificity. 

Figure 5 ROC Curves for SVM Classifier Models of AR Activity 

 
 

Abbreviations: AR = androgen receptor (antagonism); AUC = area under the curve; ROC = receiver operating characteristic; 
SVM = support vector machines. 

Regression Analysis for the Prediction of AR Potency 

Training and Test Sets 

• There are 225 active chemicals in the ToxCast data set with MOE descriptors available. 

• To develop a model for prediction of AR antagonist potency, we split these into training and test sets 

with 150 and 75 chemicals, respectively.  

• A principal component analysis (PCA) based on structural descriptors indicated that the chemicals in 

the test set are representative of the chemicals in the training set, and thus the predictions for the test 

set using the developed models are reliable (Figure 6).  
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Figure 6 Principal Component Analysis of the AR Potency Model Training and Test Sets  

 
Variable Selection 

• To optimize potency model construction and avoid overfitting, we performed variable selection 

using genetic algorithm (GA), a popular algorithm well-suited for regression models. 

• GA is an efficient stochastic optimization tool and randomized search technique. GA analysis is 

conducted in five steps: (1) encoding the descriptors as chromosomes, (2) generating the initial 

population of chromosomes, (3) evaluating the fitness function, (4) creating the next generation of 

chromosomes, (5) terminating the process.  

• The initial population was assigned to 200 chromosomes. The crossover probability and mutation rate 

were set to 50% and 1%, respectively. The coefficient of determination was taken as the fitness score 

of each chromosome. A series of variables from 10 to 60 were selected from GA. 

Regression Models 

• We used two approaches to develop models of antagonist potency, multiple linear regression (MLR) 

and partial least squares regression (PLSR). 

• MLR produced a linear model describing the relationship between the variables (molecular 

descriptors) and antagonist potency. The contribution coefficients for each descriptor are determined 

by regression analysis. 
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• PLSR employs a set of orthogonal latent variables or principal components (PCs) that are generated 

through a linear combination of the original molecular descriptors. The PCs are new variables used 

to build regression models to predict the response variable, i.e., the potency. The optimal number of 

PCs was determined by 10-fold cross-validation. 

 

Regression Model Validation 

• We evaluated the performance of the regression models by examining the correlation between the 

experimental and calculated values for both training and test sets, using R2 (coefficient of 

determination) and RMSE (root mean squared error).  

• R2 for the training set improved continuously with increasing feature number.  

• R2 for the test set initially increased, attained a maximum at a medium number of variables, and then 

gradually decreased (Figure 7). 

o The best MLR model had an R2 of 0.320 and RMSE of 0.0619 for the test set (n= 35 variables) 

o The best PLSR model had an R2 of 0.349 and an RMSE of 0.0541 (n=25 variables).  

• Figure 8 is a scatter plot of predicted versus actual AR antagonist potency (based on AR pathway 

model AUC) values from PLSR modeling. 

Figure 7 Effect of Model Complexity on Coefficient of Determination 

 
Abbreviations: MLR = multiple linear regression; PLSR = partial least squares regression; R-squared = coefficient of 
determination. 
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Figure 8 Comparison of Predicted and Actual AR Antagonist Potency by PLSR 

 
Abbreviations: AR = androgen receptor (antagonism); PLSR = partial least squares regression; R2 = coefficient of 
determination. 

 

Conclusions 

• The AR pathway model provides a biologically based mathematical approach to distinguish assay 
interference from true agonist or antagonist activity and to prioritize large numbers of environmental 
chemicals for their potential androgenic or anti-androgenic activity. 

• Because the AR pathway model correctly classified AR reference chemicals and identified 
environmental chemicals with known anti-androgenic activity, it was used to train QSAR models for 
hazard classification and potency prediction.  

• The best performing classification model was obtained using SVM in combination with a subset of 
descriptors identified via the RFE algorithm (sensitivity = 80.0%; specificity = 73.6% for test set). 

• The classification model was used to predict AR antagonist activity for the Endocrine Disruptor 
Screening Program universe of 30,000 chemicals, predicting that 20.6% (6475/31428) of these 
chemicals may have AR antagonist activity. This initial result that is certainly an overestimate 
confounded by very weak activity or cytotoxicity. Further refinement of the model should improve 
specificity. 

• For AR potency prediction, the PLSR regression model had reasonable accuracy with an R2 of 0.451 
for the training set and an R2 of 0.349 for the test set. Further work will be conducted to expand 
molecular descriptor libraries for use in the regression model and to use this model to predict 
activities of chemicals in a broader universe. 
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