Introduction

• Acute oral toxicity testing is commonly used for hazard classification and labeling of potential systemic toxicants. These classifications are based on LD50 values (the estimated dose that would result in mortality for 50% of animals tested).
• In vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This can confound comparisons to alternative non-animal approaches.
• Herein we describe the compilation and analysis of a large dataset of rat oral LD50 values, generating a reference database that provides LD50 data for the development and validation of alternative models.

Dataset Compilation

Rat acute oral systemic toxicity LD50 values were compiled from as many curated resources as possible (Table 1). The resulting inventory comprised both point estimates (exact LD50 values extrapolated from a dose-response curve) and limit tests (doses at which over 50% of test animals survive after the administration of a single high dose) inclusively. Repeated data between sources were identified so that only unique values were retained. The final database includes 21,200 LD50 values representing 15,899 chemicals.

Table 1: Sources of Rat Acute Oral Toxicity Data

<table>
<thead>
<tr>
<th>Database Resource</th>
<th>Rows of Data (of LD50 values)</th>
<th>Unique CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHA (ChemProp)</td>
<td>5533</td>
<td>2138</td>
</tr>
<tr>
<td>JRC AcuteToxBase</td>
<td>637</td>
<td>138</td>
</tr>
<tr>
<td>NLM HSDB</td>
<td>3961</td>
<td>2205</td>
</tr>
<tr>
<td>OECD (iChemPortal)</td>
<td>10,119</td>
<td>2290</td>
</tr>
<tr>
<td>PAI (NICEATM)</td>
<td>364</td>
<td>293</td>
</tr>
<tr>
<td>NLM ChemiPlus</td>
<td>13,069</td>
<td>12,974</td>
</tr>
</tbody>
</table>

13,339 chemicals with one LD50 value
2,349 chemicals with 2 LD50 values
1,120 chemicals with 3 LD50 values
609 chemicals with 4 LD50 values
2,349 chemicals with ≥2 LD50 values
2,349 chemicals with ≥3 LD50 values
609 chemicals with ≥4 LD50 values
347 chemicals with ≥5 LD50 values
609 chemicals with ≥6 LD50 values
13,339 chemicals with one LD50 value
2,349 chemicals with 2 LD50 values
1,120 chemicals with 3 LD50 values
609 chemicals with 4 LD50 values
2,349 chemicals with ≥2 LD50 values
2,349 chemicals with ≥3 LD50 values
609 chemicals with ≥4 LD50 values
347 chemicals with ≥5 LD50 values
609 chemicals with ≥6 LD50 values

Curation & Hazard Categorization

Figure 1: Isolating unique values. Since multiple sources often contained the same data (A), we identified and removed duplicate data points such that only unique values were retained in our database (B). The unique values represented both point estimate values and limit test values. Even when only unique values are considered (B), whether point estimate or limit test, LD50 values for a single chemical can span multiple U.S. Environmental Protection Agency (EPA) or United Nations Globally Harmonized System of Classification and Labeling (GHS) classification schemes (C).

Table 2: Variability of LD50 Values from Rat Oral Acute Toxicity Studies

<table>
<thead>
<tr>
<th>LD50 Distribution</th>
<th>Number of Chemicals</th>
<th>Number of LD50 values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>546 (49%)</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>519 (46%)</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>39 (3%)</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>6 (0.7%)</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>8 (0.7%)</td>
</tr>
</tbody>
</table>

LD50 Distribution

Figure 2: Histograms of LD50 distribution. The distribution of LD50 values was evaluated for point estimate values (A) and limit test values (B), respectively. For the limit test values, it is clear that the majority of limit test data comprise 2,000 mg/kg (red) or 5,000 mg/kg (blue) limits.

Reproducibility

Figure 4: Reproducibility as a function of replicates. Standard deviation was evaluated relative to the number of LD50 values per chemical for the 1,120 chemicals with at least three LD50 values. A greater number of LD50 values was not associated with larger standard deviation. Some high standard deviations observed when all data were included in the analysis (A) were reduced when the 250 “extreme” values identified in Figure 2 were removed (B). However, the effect of “extreme” values removed on the global standard deviation was insigificant.

Defining Uncertainty for Model Development

Figure 5: Defining LD50 range for modeling. The standard deviations across all 14,745 point estimate values in the dataset, per chemical, were used as input for bootstrapping (sampling 1 million times) to compute a global 95% confidence interval. This interval equates to ±0.3 log10(mg/kg) units. To provide a benchmark for evaluating alternative methods, a defined range of LD50 values should be established for chemicals. To this end, a protective and realistic range of LD50 values per chemical was defined by applying the 95% confidence interval centered around the median of the lower quartile of LD50 values per chemical (red). For illustration purposes, only chemicals with six or more LD50 values (211 chemicals) are shown in this plot. The defined range generally encompasses the distribution of LD50 values, and serves as a reasonable target for estimating LD50.

Summary

We compiled a comprehensive inventory of rat acute oral systemic toxicity data to serve as the basis for evaluating LD50 variability. The final database comprised 21,200 LD50 values representing 15,899 chemicals (after eliminating duplicate values across sources and including both point estimate and limit test data).

- The majority of LD50 data were point estimate values (14,745 of the 21,200 LD50 values). Of the remaining 6,455 limit test values, nearly 4,000 were from limit tests with values of either 2,000 mg/kg or 5,000 mg/kg corresponding to GHS and EPA cutoffs respectively.
- Evaluation of LD50 distribution using Tukey Fences identified 292 “extreme” values from 253 of 1,120 chemicals.
- Hazard categorization could be confounded by variability, exemplified by the 55 chemicals that had LD50 values spanning two or more orders of magnitude resulting in classification into multiple hazard categories.
- The standard deviation across LD50 values per chemical did not correlate with the number of LD50 replicate values per chemical (i.e., more LD50 values did not necessarily lead to greater variability).
- To apply our findings to future modeling efforts, we propose using an LD50 range that integrates estimating LD50.

Acknowledgements

This project does not necessarily reflect EPA policy and was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health under Contract No. HHSN273201500010C.

Environmental Health Sciences, National Institutes of Health under Contract No. HHSN273201500010C.

This project does not necessarily reflect EPA policy and was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health under Contract No. HHSN273201500010C.

This project does not necessarily reflect EPA policy and was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health under Contract No. HHSN273201500010C.

This project does not necessarily reflect EPA policy and was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health under Contract No. HHSN273201500010C.