

Interagency Coordinating Committee on the Validation of Alternative Methods

Non-Animal 6-Pack for Pesticide Testing: Update

Anna Lowit
Office of Pesticide Programs
US Environmental Protection Agency
March 11, 2019

Agency for Toxic Substances and Disease Registry • Consumer Product Safety Commission • Department of Agriculture
Department of Defense • Department of Energy • Department of the Interior • Department of Transportation
Environmental Protection Agency • Food and Drug Administration • National Institute for Occupational Safety and Health
National Institutes of Health • National Cancer Institute • National Institute of Environmental Health Sciences
National Library of Medicine • Occupational Safety and Health Administration

Disclaimer: This presentation does not reflect the official position of any U.S. government agency

Acute Systemic Toxicity

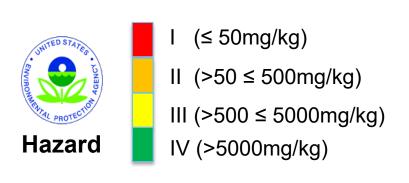
ICCVAM Acute Toxicity Workgroup Roster

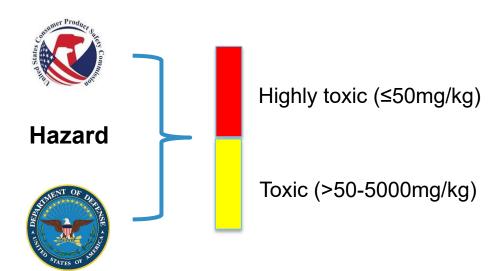
- Xinrong Chen (CPSC)
- John Gordon (CPSC)
- Joanna Matheson (CPSC)
- Lyle Burgoon (DoD)
- Donald Cronce (DoD, Cochair)
- Natalia Garcia-Reyero (DoD)
- Jeffery Gearhart (DoD)
- David Mattie (DoD)
- Ronald Meris (DoD)
- Heather Pangburn (DoD)
- Brain Pate (DoD)
- Michael Phillips (DoD)
- Emily Reinke (DoD)
- Mark Williams (DoD)

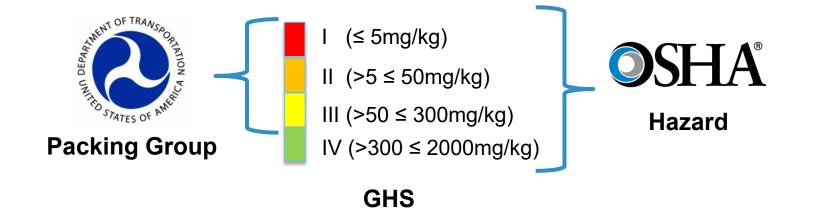
- Aiguo Wu (DoD)
- Ryan Vierling (DOT)
- Tracy Keigwin (EPA, OPP)
- Anna Lowit (EPA, OPP)
- Edward Odenkirchen (EPA, OPP)
- Grace Patlewicz (EPA, ORD, Co-chair)
- Thao (Tina) Pham (EPA, OPP)
- Elissa Reaves (EPA, OPP)
- Jenny Tao (EPA, OPP)
- Tracy Chen (FDA, OCS)
- Warren Casey (NIEHS)
- Nicole Kleinstreuer (NIEHS)
- Elizabeth Maull (NIEHS)
- George Fonger (NLM)

- Pertti (Bert) Hakkinen (NLM)
- Surender Ahir (OSHA)
- Deana Holmes (OSHA)

ICATM Liaison Members


- Pilar Prieto Peraita (EURL ECVAM)
- Seung-Tae Chung (KoCVAM)


NICEATM Support Staff (ILS)


- Judy Strickland
- Agnes Karmaus
- David Allen

Agencies that Use Acute Oral Toxicity Data

Regulatory Toxicology and Pharmacology 94 (2018) 183-196

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies

Judy Strickland^{a,*}, Amy J. Clippinger^b, Jeffrey Brown^b, David Allen^a, Abigail Jacobs^{c,1}, Joanna Matheson^d, Anna Lowit^e, Emily N. Reinke^f, Mark S. Johnson^f, Michael J. Quinn Jr.^f, David Mattie^g, Suzanne C. Fitzpatrick^h, Surender Ahirⁱ, Nicole Kleinstreuer^j, Warren Casey^j

a ILS, P.O. Box 13501, Research Triangle Park, NC 27709, USA

b PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London, UK

^c Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), White Oak Office Building 22, 10903 New Hampshire Ave., Silver Spring, MD 20993. USA

^d U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD 20850, USA

e Office of Pesticide Programs, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Washington, DC 20460, USA

^fU.S. Army Public Health Center, 5158 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA

g U.S. Air Force, Air Force Research Laboratory, AFRL/711 HPW RHDJ, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA

h Center for Food Safety and Applied Nutrition, FDA, Harvey W. Wiley Building, 5100 Paint Branch Parkway, College Park, MD 20740, USA

ⁱ U.S. Occupational Safety and Health Administration, 200 Constitution Ave. NW, Washington, DC 20210, USA

^j National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA

Predictive Models for Acute Oral Systemic Toxicity

Computational Toxicology 8 (2018) 21–24

Contents lists available at ScienceDirect

Computational Toxicology

journal homepage: www.elsevier.com/locate/comtox

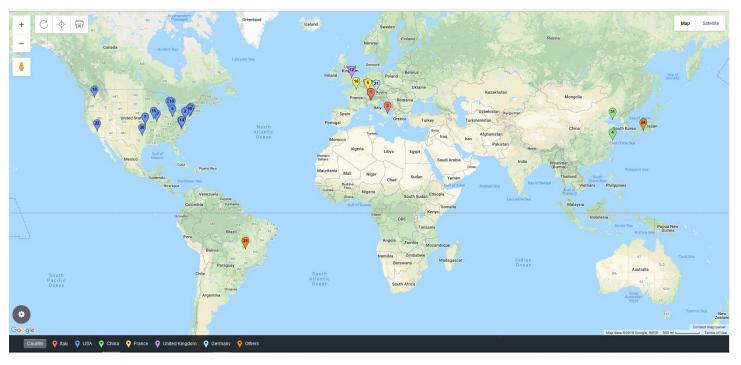
Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation

Nicole C. Kleinstreuer^a, Agnes L. Karmaus^b, Kamel Mansouri^b, David G. Allen^b, Jeremy M. Fitzpatrick^c, Grace Patlewicz^c,*

- ^a National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- ^b Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27560, USA
- C National Center for Computational Toxicology (NCCT), Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Dr., Research
 - April 2018 workshop at NIH, USA
 - https://ntp.niehs.nih.gov/go/tox-models

Consortium Comprised 35 Participating Groups

Very Toxic: 32 models


• Non-toxic: 33 models

• EPA categories: 26 models

GHS categories: 23 models

LD50: 25 models

Total: 139 models

 Models were qualitatively and quantitatively assessed and combined into consensus models

Predictive Models for Acute Toxicity:

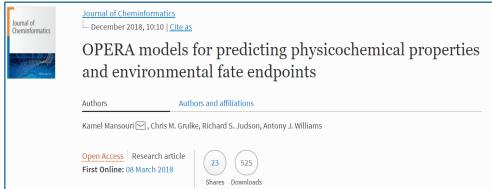
Performance

Animal Data

Rat Oral LD50: Reproducibility Consensus Model Performance (Tr/Ts Avg)

	Sensitivity	Specificity	ВА	Sensitivity	Specificity	ВА
VT	63%	99%	81%	77%	95%	86%
NT	96%	82%	89%	82%	92%	87%
EPA	74%	91%	82%	62%	94%	78%
GHS	66%	92%	79%	54%	92%	73%

	R2	RMSE	R2	RMSE
LD50	0.8	0.42	0.74	0.42


Availability of Collaborative Acute Toxicity Modeling Suite (CATMoS)

- Consensus models for acute oral toxicity
- Implemented in OPERA v2.1; available on the NIEHS GitHub repository (https://github.com/NIEHS/OPERA/releases). Two versions:
 - Graphical user interface: <u>OPERA2.1 UI win web.zip</u>
 - Command line interface: OPERA2.1 CL win web.zip
- Predictions on US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) in the future
- Manuscript to be submitted for publication this Spring

Model	Property
АОН	Atmospheric Hydroxylation Rate
BCF	Bioconcentration Factor
BioHL	Biodegradation Half-life
RB	Ready Biodegradability
ВР	Boiling Point
HL	Henry's Law Constant
KM	Fish Biotransformation Half-life
KOA	Octanol/Air Partition Coefficient
LogP	Octanol-water Partition Coefficient
MP	Melting Point
КОС	Soil Adsorption Coefficient
VP	Vapor Pressure
WS	Water solubility
RT	HPLC retention time

Recent Updates:

- Structural properties
- pKa
- Log D
- ER activity (CERAPP)

(https://ehp.niehs.nih.gov/15-10267/)

AR activity (CoMPARA)

(https://doi.org/10.13140/RG.2.2.19612.80009, https://doi.org/10.13140/RG.2.2.21850.03520)

Acute toxicity (CATMoS)

(https://doi.org/10.1016/j.comtox.2018.08.002)

Acute Dermal Pesticide Formulation Toxicity Testing

- Collaboration between EPA & NIEHS/NICEATM
- Analyze the relative contribution of data from acute oral and dermal toxicity tests to pesticide hazard classification and labelling
- Collected acute dermal and oral lethality data from rat studies with pesticide formulations
- EPA intends to expand the dermal waiver guidance to include technical ingredients (drafted and under review)

US Environmental Protection Agency Office of Pesticide Programs

Guidance for Waiving Acute Dermal Toxicity Tests for Pesticide Formulations & Supporting Retrospective Analysis

November 9, 2016

Contents lists available at ScienceDirect

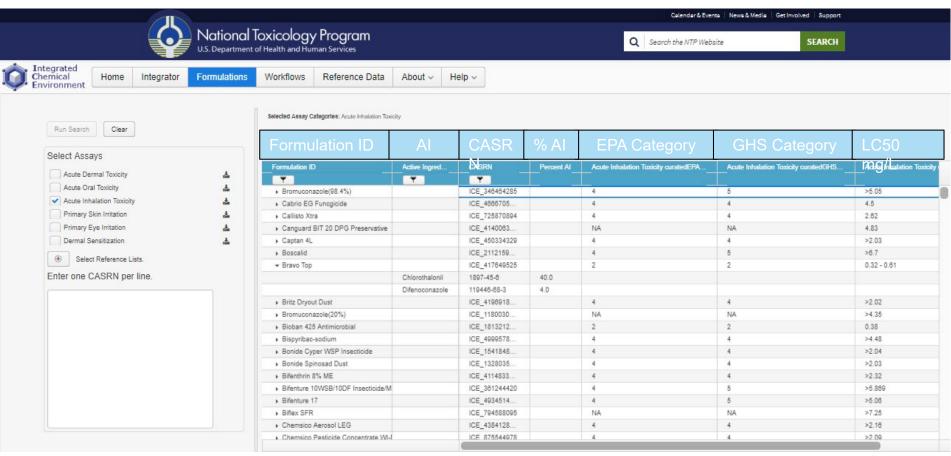
Toxicology in Vitro

journal homepage: www.elsevier.com/locate/toxinvit

Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report

Amy J. Clippinger^{a,*}, David Allen^b, Annie M. Jarabek^c, Marco Corvaro^d, Marianna Gaça^e, Sean Gehen^f, Jon A. Hotchkiss^g, Grace Patlewicz^h, Jodie Melbourne^a, Paul Hinderliterⁱ,

Miyoung Yoon^j, Dongeun Huh^k, Anna Lowit^l, Barbara Buckley^c

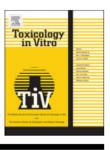

Daniel M. Wilson^g, Ian Indans^o, Mathieu Vinken^p

- Workshop on Alternative Approaches for Acute Inhalation Toxicity Testing
- Co-organized by the PETA International Science Consortium and NICEATM

Establish a Database of Existing Acute Inhalation Toxicity Data

Integrated Chemical Environment: https://ice.ntp.niehs.nih.gov/

Review of Mechanisms of Acute Inhalation Toxicity, Dosimetry, and Non-Animal Methods


Toxicology in Vitro 52 (2018) 131-145

Contents lists available at ScienceDirect

Toxicology in Vitro

Review

Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity

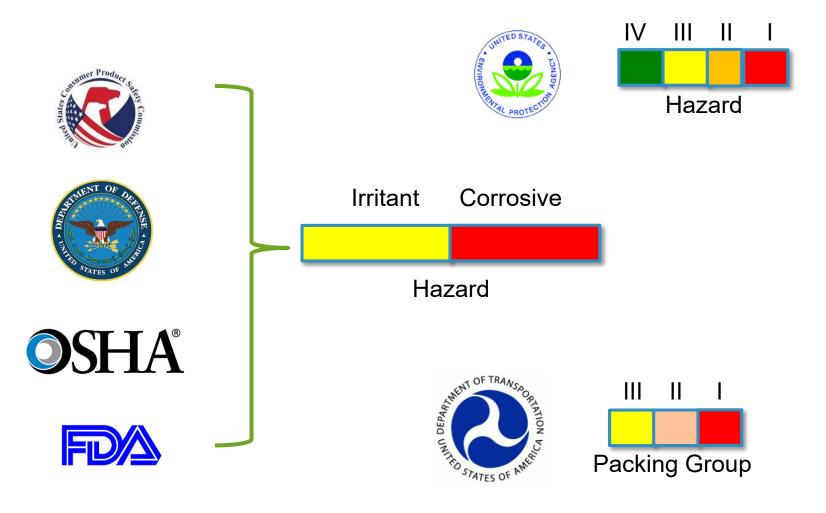
Amy J. Clippinger^{a,*}, David Allen^b, Holger Behrsing^c, Kelly A. BéruBé^d, Michael B. Bolger^e, Warren Casey^f, Michael DeLorme^g, Marianna Gaça^h, Sean C. Gehenⁱ, Kyle Glover^j, Patrick Hayden^k, Paul Hinderliter^l, Jon A. Hotchkiss^m, Anita Iskandarⁿ, Brian Keyser^o, Karsta Luettichⁿ, Lan Ma-Hock^p, Anna G. Maione^k, Patrudu Makena^o, Jodie Melbourne^a, Lawrence Milchak^g, Sheung P. Ng^q, Alicia Paini^r, Kathryn Page^s, Grace Patlewicz^t, Pilar Prieto^r, Hans Raabe^c, Emily N. Reinke^u, Clive Roper^v, Jane Rose^w, Monita Sharma^a, Wayne Spoo^o, Peter S. Thorne^x, Daniel M. Wilson^m, Annie M. Jarabek^y

Eye and Skin Irritation

ICCVAM Ocular and Dermal Irritation Workgroup Roster

- Adrienne Layton (CPSC)
- Joanna Matheson (CPSC)
- John Gordon (CPSC)
- Eric Hooker (CPSC)
- David Mattie (DOD, WG Chair)
- Timothy Varney (DOD)
- Evisabel Craig (EPA, OPP)
- Krystle Yozzo (EPA, OPP)
- Jenny Tao (EPA, OPP)
- Jill Merrill (FDA, CDER)
- Andrew J. McDougal (FDA, CDER)
- Donnie Lowther (FDA, CFSAN)
- Warren Casey (NIEHS)
- Nicole Kleinstreuer (NIEHS)
- Elizabeth Maull (NIEHS)

ICATM Liaison Members


- João Barroso (EURL ECVAM)
- Yavinder Bhuller (Health Canada)
- Deborah Ramsingh (Health Canada)

NICEATM Support Staff (ILS)

- Amber Daniel
- Neepa Choksi
- David Allen

Agencies that Use Ocular and Dermal Data

CUTANEOUS AND OCULAR TOXICOLOGY https://doi.org/10.1080/15569527.2018.1540494

REVIEW ARTICLE

United States regulatory requirements for skin and eye irritation testing

Neepa Y. Choksi^a, James Truax^a, Adrienne Layton^b, Joanna Matheson^c, David Mattie^d, Timothy Varney^e, Jenny Tao^f, Krystle Yozzo^f, Andrew J. McDougal^g, Jill Merrill^h, Donnie Lowtherⁱ, Joao Barroso^j, Brenda Linke^k, Warren Casey^l and David Allen^a

^aIntegrated Laboratory Systems, Inc, Morrisville, NC, USA; ^bDivision of Pharmacology and Physiology Assessment, U.S. Consumer Product Safety Commission, Rockville, MD, USA; ^dBioeffects Division, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA; ^eResearch Institute of Chemical Defense, U.S. Army, Aberdeen Proving Ground, MD, USA; ^fOffice of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, USA; ^gCenter for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA; ^hDermatologic and Dental Drug Products, U.S. Food and Drug Administration, Silver Spring, MD, USA; ⁱOffice of Cosmetics and Colors, U.S. Food and Drug Administration, University Station, MD, USA; ^jEU Reference Laboratory for Alternatives to Animal Testing, Institute for Health and Consumer Protection, Ispra, Italy; ^kHealth Effects Division 1, Health Evaluation Directorate, Health Canada's Pest Management Regulatory Agency, Ottawa, Canada; ^INational Toxicology Program, National Institutes of Environmental Health Sciences, Morrisville, NC, USA

Alternative Assays: Eye Irritation

- NICEATM analyzed paired in vivo and in vitro data for approximately 200 agrochemical formulations provided by 5 companies
- Conclusions:
 - Insufficient data from multiple assays to establish a defined approach
 - Prospective testing needed to fill data gaps

Prospective Testing

- Focus on the most common formulation types
 - suspension concentrates (SC)
 - emulsifiable concentrations (EC)
 - soluble liquids (SL)
- Balanced design with respect to hazard classification
- Careful consideration of available in vivo data
- Formulations donated by Crop Life America (CLA) partner companies
 - BASF; Bayer; FMC; Dow-DuPont (Corteva Agriscience);
 Monsanto; Syngenta
- Coded formulations distributed to testing labs by NTP

Methods Included in Prospective Testing

Test Method	OECD TG	Testing Laboratory
Bovine Corneal Opacity and	OECD TG 437	Institute for In Vitro Sciences
Permeability		
Neutral Red Release	-	Institute for In Vitro Sciences
Isolated Chicken Eye	OECD TG 438	Citoxlab
EpiOcular (EO) (EIT method)	OECD TG 492	MatTek
EO (Time-to-toxicity method; ET50-	-	MatTek
neat protocol)		
EO (Time-to-toxicity method; ET50-	-	MatTek
dilution protocol)		
Porcine Cornea Reversibility Assay	-	MB Research Labs

 Co-organized by NICEATM and the PETA International Science Consortium, with stakeholders from ICCVAM, ODIWG, EURL ECVAM, PMRA, and industry

Study Phases

Phase	Activities	Completion Dates
Pre-Study	Formation of stakeholder study group	March 2018
Phase	 Scientists representing ICCVAM agencies, industry, and international regulatory and non- governmental organizations 	
	 Assist with formulation procurement, study evaluation, and data review 	
	Selection of in vitro test methods	
Phase 1	 Testing of six formulations (three Category I/Category 1 and three Category IV/Not Classified formulations) in all in vitro test methods 	September 2018
Phase 2	Testing of 10 formulations in all <i>in vitro</i> test methods	March 2019
Phase 3	 Testing of approximately 30 formulations in selected in vitro test methods 	September 2019

Funding to date provided by NICEATM, PISC, and CLA

Study Status

- Phase 1 results showed that no single test method correctly classified all the pesticide formulations relative to classifications based on in vivo testing.
- Phase 2 testing is currently ongoing; pesticide formulations with a broader range of eye irritancy classifications than Phase 1 are being tested using all in vitro methods.
- Based on Phase 1 and 2 results, one or more of the test methods may be used in Phase 3 to test an expanded set of pesticide formulations.
 - The outcomes of this analysis will suggest endpoints that can form the basis of a defined approach for pesticide formulations testing for eye irritation/corrosion potential.

Skin Irritation: Private-Public Partnership

- Optimization of 3D skin model for testing agrochemicals and antimicrobial cleaning products (AMCPs)
- Companies donated agrochemical formulations and AMCPs
- Protocol optimization studies conducted at IIVS
- Regular stakeholder teleconferences to discuss updates, data needs, etc.
 - PISC, PCRM
 - EPA and NTP
 - Industry

Additional Efforts

- Investigate the feasibility of developing new approaches, particularly for classes of substances that are poorly predicted by the existing in vitro models
 - Reflect on published work and OECD
 - Interrogate in vivo variability
- Investigate incorporation of other data inputs
- Consider machine learning and other computational approaches, where feasible

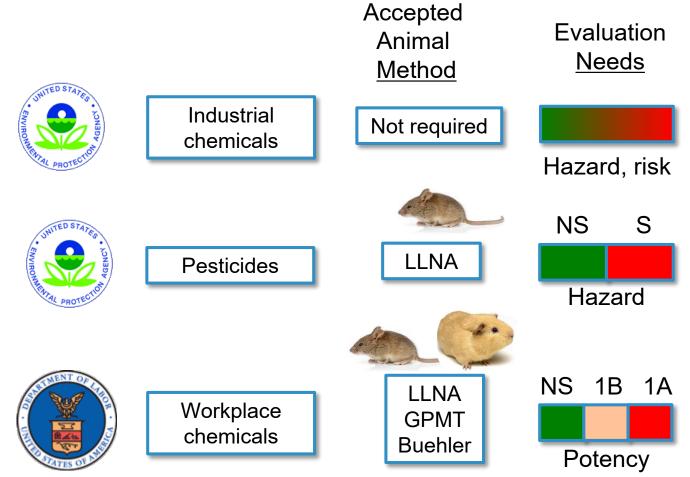
Skin Sensitization

ICCVAM Skin Sensitization Workgroup Roster

- Moiz Mumtaz (ATSDR)
- Patricia Ruiz (ATSDR)
- John Gordon (CPSC)
- Joanna Matheson (CPSC, Chair)
- Emily N. Reinke (DOD)
- Evisabel Craig (EPA, OPP)
- David Lehmann (EPA, ORD)
- Anna Lowit (EPA, OPP)
- Timothy McMahon (EPA, OPP)
- Keith Salazar (EPA, OPPT)
- Louis (Gino) Scarano (EPA, OPPT)
- Simona Bancos (FDA, CDRH)
- Paul C. Brown (FDA, CDER)
- Rakhi M. Dalal-Panguluri (FDA, CDRH)
- Wei Ding (FDA, NCTR)
- Robert Heflich (FDA, NCTR)

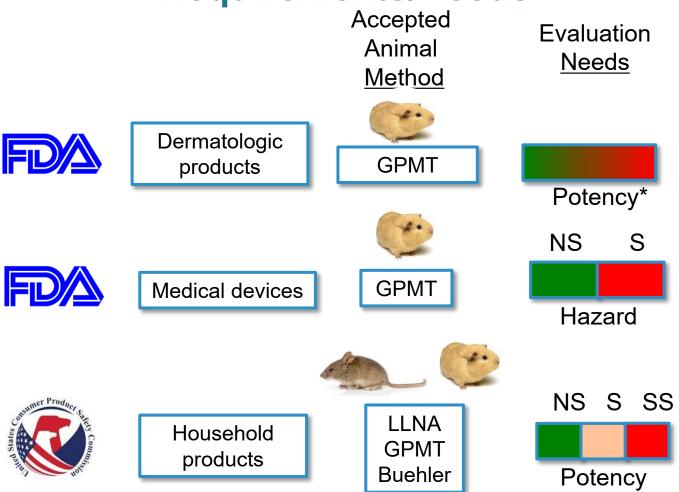
- Hon-Sum Ko (FDA, CDER)
- Diego Rua (FDA, CDRH)
- Stanislav Vukmanovic (FDA, CFSAN)
- Jeffrey Yourick (FDA, CFSAN)
- Warren Casey (NIEHS)
- Dori Germolec (NIEHS)
- Nicole Kleinstreuer (NIEHS)
- Elijah Petersen (NIST)

ICATM Liaison Members


Silvia Casati (EURL ECVAM)

NICEATM Support Staff (ILS)

- Jim Truax
- Judy Strickland
- David Allen


Skin Sensitization: U.S. Agency Requirements/Needs

Non-animal alternatives considered on a case-by-case basis

Skin Sensitization: U.S. Agency Requirements/Needs

Non-animal alternatives considered on a case-by-case basis, except for medical devices.

Archives of Toxicology (2019) 93:273–291 https://doi.org/10.1007/s00204-018-2341-6

REGULATORY TOXICOLOGY

Skin sensitization testing needs and data uses by US regulatory and research agencies

Judy Strickland $^1 \odot \cdot$ Amber B. Daniel $^1 \cdot$ David Allen $^1 \cdot$ Cecilia Aguila $^2 \cdot$ Surender Ahir $^3 \odot \cdot$ Simona Bancos $^4 \cdot$ Evisabel Craig $^5 \cdot$ Dori Germolec $^6 \cdot$ Chandramallika Ghosh $^4 \cdot$ Naomi L. Hudson $^7 \cdot$ Abigail Jacobs $^8 \cdot$ David M. Lehmann $^9 \odot \cdot$ Joanna Matheson $^{10} \cdot$ Emily N. Reinke $^{11} \cdot$ Nakissa Sadrieh $^{12} \cdot$ Stanislav Vukmanovic $^{12} \cdot$ Nicole Kleinstreuer $^{13} \odot$

Received: 1 August 2018 / Accepted: 23 October 2018 / Published online: 30 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Regulatory Toxicology and Pharmacology 95 (2018) 52-65

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

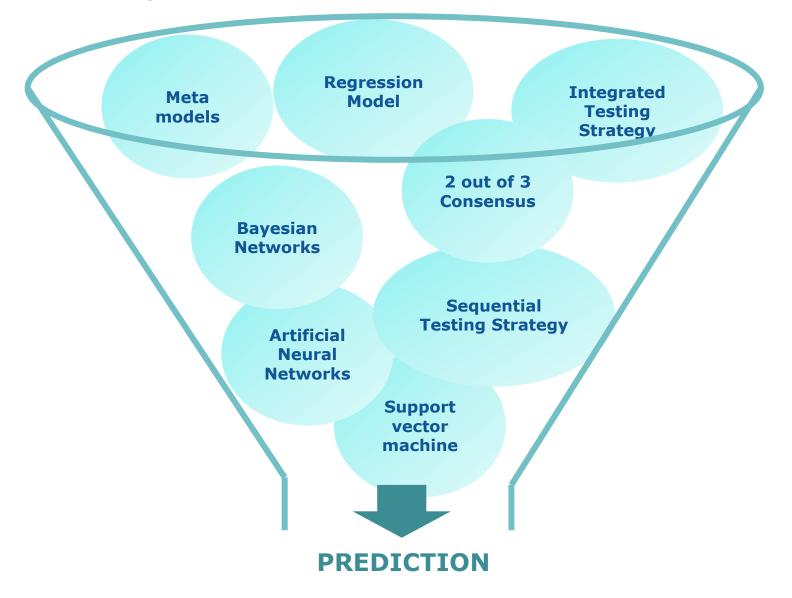
International regulatory requirements for skin sensitization testing

Amber B. Daniel^a, Judy Strickland^{a,*}, David Allen^a, Silvia Casati^b, Valérie Zuang^b, João Barroso^b, Maurice Whelan^b, M.J. Régimbald-Krnel^c, Hajime Kojima^d, Akiyoshi Nishikawa^d, Hye-Kyung Park^e, Jong Kwon Lee^e, Tae Sung Kim^e, Isabella Delgado^f, Ludmila Rios^g, Ying Yang^h, Gangli Wangⁱ, Nicole Kleinstreuer^j

Global Skin Sensitization Project

- Objective: analysis of available non-animal defined approaches (DAs)
- NICEATM collaboration with Cosmetics Europe
 - Curation/generation of
 - in vivo LLNA and human data
 - in vitro cell-based data that maps to AOP
 - in silico computer predictions, chemical structural features & properties
- Qualitative and quantitative evaluation of OECD DAs as case studies (ICATM framework)
- Fully transparent approach

 (i.e., build open-source code packages)

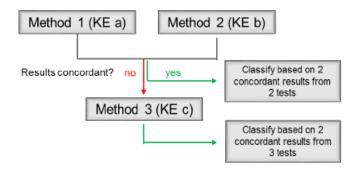


Evaluate performance against LLNA and human hazard/potency categories

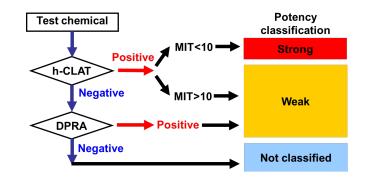
Hoffmann et al. 2018 Crit Rev Tox Kleinstreuer et al. 2018 Crit Rev Tox

Types of Defined Approaches

Draft Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing


- Announced April 10, 2018 & describes the science that supports a policy to accept alternative (in vitro, in silico, in chemico) approaches for identifying skin sensitization hazard in place of animal studies.
 - Multiple non-animal testing strategies in vitro, in chemico, and in silico inputs demonstrate comparable or superior performance to the laboratory animal studies.
 - Public comment period ended on June 9, 2018.
- The interim policy is the result of collaboration between
 - Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)
 - NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)
 - European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)
 - Health Canada (PMRA)

Draft Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing


2 out of 3

 No differential weighting of individual test methods, or defined sequential order of testing

Sequential Testing Strategy

- Prediction can be derived after first tier
- Depends on KE3 (e.g. hCLAT) and KE1 (e.g. DPRA)

International Harmonization

- OECD proposal (SPSF) co-led by US, EU, and Canada
 - Create a performance based test guideline for non-animal defined approaches to skin sensitization testing
 - Included in OECD workplan April 2017, update provided April 2018
- Special sessions of the OECD national coordinators in Dec 2017 & 2018 to review progress and discuss next steps
 - Achieved consensus on evaluation framework for DA assessment
 - Formed expert group on skin sensitization DAs, including subgroups on uncertainty and applicability domain
 - Expert review of simple, rule-based DAs complete (June 2018)
 - DA GL drafted (September 2018)

Expanding Coverage of Chemical Space

- NTP is supporting testing other types of chemicals in three alternative test methods: DPRA, KeratinoSens™, h-CLAT
- NTP has procured approximately 235 chemicals including: pesticides, agrochemical formulations, dermal excipients, personal care product ingredients, "challenge" chemicals
- Chemical nominations from multiple agencies
 - EPA Office of Pesticides, Office of Pollution Prevention and Toxics, and Office of Research and Development
 - Consumer Product Safety Commission
 - Food and Drug Administration
 - NTP

EPA's Office of Pesticide Programs (OPP) is hiring Stop by the EPA ORD Booth (#4065)

OPP representatives will be there:

Monday 1:30-2:30

Tuesday 2:30-3:30

Wednesday 10:30-12:00

USAjobs announcement#:

09/11 is R-OCSPP-DE-2019-0036 12/13 is R-OCSPP-DE-2019-0037