

Validation of the Electrophilic Allergen Screening Assay (EASA) to Detect Substances that Impact the Initial Key Event in the Adverse Outcome Pathway for Skin Sensitization

<u>J. Gordon¹, J. Truax², A. Borrel², E. Reinke², V. Adams³, D. Rua⁴, E. Petersen⁵, R. Uhl¹, V. Johnson⁶, J. Elliott⁵, R. Gutierrez⁵, D. Germolec⁷, D.G. Allen², N.C. Kleinstreuer⁷, J. Strickland²</u> ¹CPSC, Rockville, MD; ²Inotiv, RTP, NC; ³DCPH-A, Aberdeen Proving Ground, MD; ⁴FDA/CDRH, Silver Spring, MD; ⁶Burleson Research Technologies, Morrisville, NC; ⁷NIH/NIEHS/DTT/PTB/NICEATM, RTP, NC.

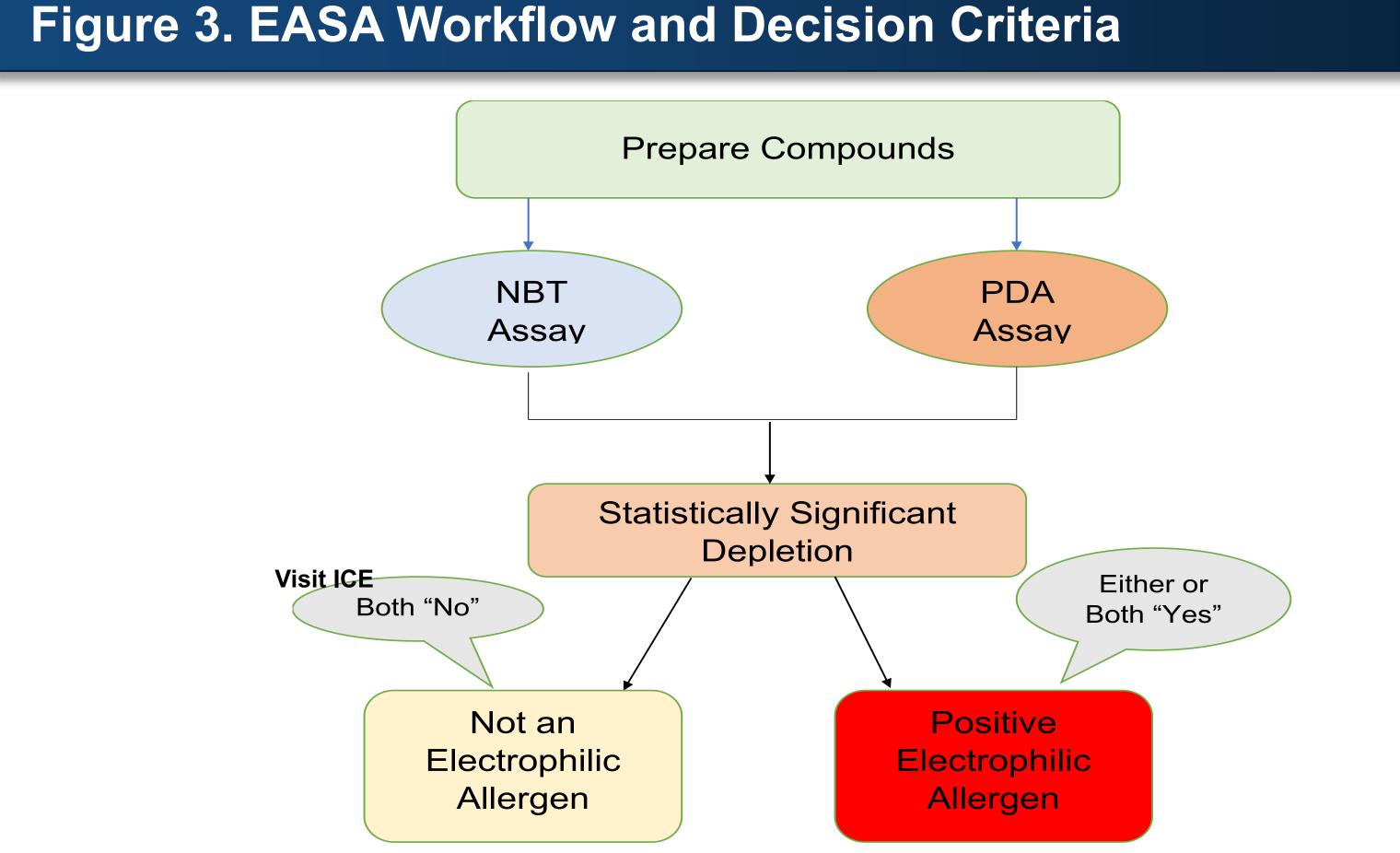
Introduction

- Chemical binding to skin proteins is the initial key event in the adverse outcome pathway for skin sensitization (Figure 1). The electrophilic allergen screening assay (EASA) was originally developed by the National Institute of Occupational Safety and Health as a cuvette-based assay to identify substances that have the potential to cause allergic contact dermatitis (Chipinda et al. 2011, 2014).
- The EASA evaluates a substance's ability to bind nitrobenzenthiol (NBT) or pyridoxylamine (PDA) probes used as surrogates for thiol- or amine-containing skin proteins (Table 1). Skin sensitizers bind with amino acids containing thiol or amine groups to form haptens, which initiates skin sensitization (Figure 1).
- Probe depletion is measured by absorbance (NBT) or fluorescence (PDA) spectroscopy. A test substance is positive when it meets the positive depletion criterion for either NBT or PDA and is negative when the depletion fails to meet the positive criterion for both tests (Figure 3).
- The EASA was subsequently modified by the U.S. Consumer Product Safety Commission (CPSC) and the National Institute of Standards and Technology (NIST) into a higher-throughput assay using a 96-well format through a measurement science approach (Figure 2, Petersen et al. 2022).
- Four laboratories participated in a validation study of the EASA:
 - U.S. Food and Drug Administration Center for Devices and Radiological Health (FDA/CDRH)
 - Defense Centers for Public Health Aberdeen (DoD)
 - Burleson Research Technologies, Inc. (BRT)
 - CPSC/NIST (lead laboratory)
- The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) assembled a validation management team to oversee the study.
- The validation study tested 20 reference chemicals from the Direct Peptide and Amino Acid Derivative Reactivity Assay (DPRA/ADRA) Performance Standards (OECD 2019), 12 of which are tested three times for the assessment of within-laboratory reproducibility (Table 2). The performance of the EASA was determined by comparison with local lymph node assay outcomes noted in the performance standards document (OECD 2019).

Figure 2. EASA Plate Layout Map for NBT and PDA Assays

	2	3	4	5	6	7	8	9	10	11	12
BO	\bigcirc	•	•	•					B	B	B
С ()	\bigcirc			•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\odot	\odot	\odot
D	\bigcirc								B	B	B
E	\bigcirc	•	•	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	₿	₿	₿
FO	\bigcirc								B	B	B
G〇	\bigcirc			•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	8	8	8
HO	\bigcirc	•	•	•				•	B	B	B

TCs are added starting in columns 6 - 12 in rows B - H, horizontally


 \bigcirc - NC/PC Blank wells (40 µl ACN + 160 µl SS without Probe) PC (40 μl PC in ACN + 160 μl SS with Probe) \bigcirc - NC (ACN) (40 µl ACN + 160 µl SS with Probe) • TC (40 μl TC in ACN + 160 μl SS with Probe) without Probe)

• Not used— no additions

NC = negative control, PC = positive control, ACN = acetonitrile, TC = test chemical, SS = solvent system

Organism Response Adverse Outcome flammation upon challenge with allergen


ole 1. Characteristics of EASA Component Assays				Table 3. EASA Performance by Laboratory						
	NBT Absorbance Assay	PDA Fluorescence Assay		Lab #	Balanced Accuracy	Sensitivity	Specificity	Within Lab Reproducibility	Between Lab Reproducibilit	
velength (nm)	412	324 excitation 398 emission								
easurement times	5, 20, 35, 50 min*	5, 20, 35, 50 min		1	76%	85%	67%	94%	-	
sitive control	Benzyl bromide	Glutaraldehyde		2	82%	92%	71%	100%		
gative control	Solvent without probe	Solvent without probe		3	84%	85%	83%	97%	96%	
gative response criterion	No statistically significant depletion of probe based on protocol parameters									
sitive response criterion	Statistically significant depletion of probe based on protocol parameters			4	84%	85%	83%	94%		
The 50 min time point is used to determine a final positive or negative response.				Sensitivity: pr	curacy: the aver oportion of all p oportion of all r	positive chemic	als correctly c	lassified.		

Table 2. EASA NBT/PDA and Final Outcomes by Laboratory **Compared to LLNA and DPRA/ADRA**

	E	EASA Outcomes	LLNA	DPRA/ADRA Outcomes ³		
Test Chemical	Lab 1 Lab 2 Lab 3 Lab 4		Lab 4			Outcomes
Lauryl gallate	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Chloramine T trihydrate	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Metol (4-methyl amino phenol)	Pos/Inc ² /Pos	Pos/Neg/ <mark>Pos</mark>	Pos/Inc/ <mark>Pos</mark>	Pos/Inc/ <mark>Pos</mark>	Pos	Pos/Pos
2-Mercaptobenzothiazole	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Benzyl salicylate	Neg/Pos/ <mark>Pos</mark>	Neg/Pos/Pos	Neg/Pos/Pos	Neg/Pos/ <mark>Pos</mark>	Pos	Pos-Neg/Pos
Cinnamaldehyde	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Imidazolidinyl urea	Neg/Pos/ <mark>Pos</mark>	Neg/Pos/Pos	Neg/Pos/Pos	Neg/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Ethyl acrylate	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Pos	Pos/Pos
Salicylic acid	Neg/Inc ³ /Inc	Neg/Neg/Neg	Neg/Inc/ Inc	Neg/Inc/ Inc	Neg	Pos-Neg/Neg
Benzyl alcohol	Pos/Neg/ <mark>Pos</mark>	Pos/Neg/Pos	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Neg	Pos-Neg/Neg
Glycerol	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Neg	Neg/Neg
Isopropanol	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Neg	Neg/Neg
Benzoquinone	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Dihydroeugenol	Neg/Neg/ <mark>Neg</mark>	Neg/Pos/ <mark>Pos</mark>	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Pos	Pos-Neg/Pos-Neg
Palmitoyl chloride	Pos/Inc/Pos	Pos/Pos/Pos	Pos/Neg/ <mark>Pos</mark>	Pos/Pos/ <mark>Pos</mark>	Pos	Pos/Pos
Farnesol	Pos/Pos/ <mark>Pos</mark>	Neg/Pos/Pos	Pos/Pos/ <mark>Pos</mark>	Pos/Pos/Pos	Pos	Pos/Pos
Dimethyl isophthalate	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg	Neg/Neg
Methyl salicylate	Neg/Pos/ <mark>Pos</mark>	Neg/Pos/Pos	Neg/Pos/Pos	Neg/Pos/ <mark>Pos</mark>	Neg	Pos-Neg/Neg
4-Aminobenzoic acid	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/Neg	Neg/Neg/ <mark>Neg</mark>	Neg/Neg/ <mark>Neg</mark>	Neg	Neg/Neg
Benzyl cinnamate	Pos/Pos/Pos	Neg/Pos/Pos	Neg/Pos/Pos	Neg/Pos/ <mark>Pos</mark>	Pos	Neg/Neg

¹ EASA NBT and PDA outcomes were determined as described in Figure 3. The final EASA call is bolded, RED indicates a positive call, BLUE indicates a negative call, and **BLACK** indicates an inconclusive call. ² Inc = Inconclusive; the substance tested negative at concentrations lower than that specified in the protocol. ³ OECD 2019.

Conclusions

• This preliminary assessment yielded performance statistics for the EASA (Table 3) that meet the acceptance criteria established by the Organisation for Economic Co-operation and Development (OECD) for similar assays (OECD 2019). This suggests that the EASA may be useful for identifying potential skin sensitizers.

• Development of the validation report is underway. The report will undergo peer review upon acceptance by the validation management team. Results will also be reported in the peer-reviewed literature.

• This method may be proposed to OECD as an addition to OECD Test Guideline 442C.

Acknowledgments

Learn more about ICE at SOT 2023:

Multiple demonstrations daily at the NIEHS booth

Visit ICE https://ice.ntp.niehs.nih.gov

The Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) supported this poster. Technical support was provided by Inotiv under NIEHS contract HHSN273201500010C and by Burleson Research Technologies, Inc. under NIEHS contract HHSN273201400017C.

The views expressed above do not necessarily represent the official positions of any Federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.

References

Chipinda et al. 2011. Chem Res Toxicol 23:918-925

Chipinda et al. 2014. Toxicol 315:102-109

OECD 2012. The Adverse Outcome Pathway for Skin Sensitization Initiated by Covalent Binding to Proteins. Part 1: Scientific Evidence

OECD 2019. Performance Standards for DPRA/ADRA

OECD 2022. Test Guideline 442C

Petersen et al. 2022. Toxics 10(5):257

Subscribe to NICEATM News

To get announcements of NICEATM activities, visit the NIH mailing list page for NICEATM and click "Subscribe."