Molecular mechanisms for persistence of the effects of developmental toxicants: The fetal basis of adult disease/dysfunction, and potential for transgenerational inheritance

> Michael J Carvan III University of Wisconsin-Milwaukee carvanmj@uwm.edu

Acknowledgements

Carvan Lab

Jeremy Larson Rebekah Klingler Mathew Pickens Thomas Kalluvila Francisco Mora Abby Debofsky

UWM Zilber School of Public

<u>Health</u>

Michael Laiosa Kurt Svoboda Peter Tonellato

American University

Victoria Connaughton

University of Toledo

Fred Williams

Washington State University

Mike Skinner

Supported by:

IHS/NIH Great Lakes Native American Research Center for Health
National Institute of Environmental Health Sciences
University of Wisconsin-Milwaukee Children's Environmental Health Sciences Core Center
USEPA Great Lakes Restoration Initiative

Barker Hypothesis

The proposition that a baby's nourishment in utero and during infancy determines the subsequent development of risk factors such as high blood pressure, blood clotting biochemistry and glucose intolerance and is thus a major determinant of coronary heart disease later in life.

Barker et al. The Lancet 1986, 1989, 1993

Developmental Origins of Health and Disease

Laboratory Focus

MeHg Exposure Over Developmental Period

unpublished

development (time)

For lipophilic chemicals with a long-half life:

Yolk partitioning upon direct exposure (**4-24 hpf**), with subsequent distribution to embryo during growth and yolk utilization, creates a developmental exposure similar to that of mammals WITHOUT the influences of maternal metabolism

Acoustic/Vibrational Startle Reflex in Zebrafish

• Simple reflex

Stimulus (acoustic/vibrational, touch, visual), Receptors, Mauthner cell, Interneurons, Trunk muscles

C-start

Latency of response Angle of flexion Escape velocity Habituation

Adult Visual Startle Response

Adult Visual Startle—Direct Exposure (4-24 hpf)

Visual Startle Responses in 5 Minutes

Weber et al., Physiol Behav 2008.

Possible Mechanisms for Deficit

Sites of concern:

- Retina, Optic Nerve, Optic Tectum Locomotor Pathways
- Permanent structural damage during development?
- Mistakes in neuronal development?
- Permanent changes in neuronal function?

untreated

0.3µM MeHg

Retinal Electrophysiology

http://www.pdn.cam.ac.uk/staff/harris/cell.jpg

Effects on Adult Retinal Potassium Currents ^(a)

Delayed rectifying (I_K) current is enhanced in adult zebrafish following developmental exposure to MeHg.

Weber et al., Physiol Behav 2008.

Effects on Spinal Motorneurons

Tg (Isl1:gfp)

 $0.1 \, \mu M MeHg$

And they are HYPERACTIVE

Spatial Alternation Task

Mercury- Induced <u>Transgenerational</u> Inheritance of Abnormal Phenotypes

Retinal Electrophysiology

Visual Startle in Adult F2 Lineages

F2 Visual Startle Responses in 5 Minutes

Effects on Retinal Potassium Currents in F2 Lineages

Figure 4. Change in peak amplitude of I_K current recorded from bipolar cells in retinas exposed to various concentrations of MeHg. Representative current traces are given at the top. The graph at the bottom plots mean peak currents elicited at different voltage steps from a holding potential of -60mV.

Spontaneous Activity in F2 Lineages

They've lost their "glide"

Distribution of Phenotypes in F2 Lineages

Independent inheritance

Independent inheritance

Supplemental Table S2: Evaluation of expected versus observed inheritance of neurobehavioral phenotypes.

F2 lineage (nM)	n	Neither Phenotype	Visual deficit	Hyperactivity	Both Phenotypes		
					Expected	Observed	Chi-square
0	15	87% (13)	7% (1)	7% (1)	0% (0)	0% (0)	
1	20	5% (1)	65% (13)	65% (13)	42% (8)	35% (7)	
3	16	6% (1)	93% (14)	38% (6)	35% (6)	31% (5)	2=0.067 df=4
10	18	6% (1)	72% (13)	61% (11)	44% (8)	39% (7)	p=0.999
30	17	6% (1)	71% (12)	71% (12)	50% (9)	47% (8)	
100	15	0% (0)	93% (14)	60% (9)	56% (8)	53% (8)	

Mechanism? Epigenetic Inheritance

DNAmet epimutations have been shown to be heritable and associated with transgenerational inheritance in several species.

Transgenerational Inheritance in Zebrafish

Chemical	Citation	Phenotypic endpoint(s)	Epigenetics
TCDD	Baker TR et al. 2014	Skeletal develop, sex ratio, male-mediated reproduction	None
Bisphenol A	Lombó et al. 2015	Heart failure	Global DNAmet in testes, sperm
	Akhter, et al. 2018	Reproductive abnormalities	None
Methylmercury	Carvan et al. 2017	Neurobehavior, bipolar cell electrophysiology	MeDIPseq in sperm
Mono(2-ethylhexyl) phthalate 5-azacytidine	Kamstra et al. 2017	None	Locus-specific methylation (6 and 2, respectively)
Benzo[a]pyrene	Knecht et al. 2017	Neurobehavior, BMI, heartbeat, mitochondrial function	Global DNAmet

Differentially Methylated Regions in FO Sperm

Number of DMRs using different EdgeR pvalues curroff thresholds

p-value	allWindow	twoWindow
1x10 ⁻³	10125	2966
1x10 ⁻⁴	3005	1171
1x10 ⁻⁵	1383	634
1x10 ⁻⁶	811	413
1x10 ⁻⁷	533	291

Differentially Methylated Regions in F2 Sperm

Number of DMRs using different EdgeR p-values curroff thresholds

p-value	allWindow	twoWindow
1x10 ⁻³	22877	8370
1x10 ⁻⁴	8499	3429
1x10 ⁻⁵	4093	1771
1x10 ⁻⁶	2307	985
1x10 ⁻⁷	1414	617

RNAseq Analysis F2 Adults

Dysregulated KEGG pathways

Brain

Retina

Linking DOHaD, Epigenetics, Transcriptomics

Relationship between the germline epigenome and that of somatic cells associated with neurobehavioral defects (anatomy, physiology, MeDIPseq, RNAseq)

Linking Epigenetics and Transcriptomics

We can do gene expression and DNAmet in the same cell prep

unpublished

Powerful System for DOHaD, Generational Effects

Strengths

- Genome resources
- Most cell/molecular pathways similar to humans
 - Complex behaviors
- NOT inbred
- Few limitations on replication
 - Large clutch size
- GFP-labeled lines for most cell types
- Can complement (limit) the use of mammals in research

Weaknesses

- They are not mammals
 - No mammary tissue
 - No lungs
- Small tissues can be limiting
 - Analytical chemistry
 - Biochemistry
 - Physiology

The Bemidji Statement on Seventh Generation Guardianship

"The first mandate...is to ensure that our decisionmaking is guided by consideration of the welfare and well being of the seventh generation to come."

http://www.sehn.org/bemidjistatement.html

Methylmercury Treatments

Total Hg Analysis and Evaluation of Dosimetry				
Media, Nominal (nM)	Media, Measured (nM)	Embryo, Measured (ppb)	Similar values in human cord blood	
0	0.15 <u>+</u> 0.02	5.5 <u>+</u> 0.5		
1	1.5 <u>+</u> 0.4	19.4 <u>+</u> 1.0		
3	2.9 <u>+</u> 0.2	51 <u>+</u> 3.5	1% Lake Superior	
10	10 <u>+</u> 0.05	257 <u>+</u> 10	Highest Lake Superior	
30	32 <u>+</u> 0.6	836 <u>+</u> 68	Minamata, Japan	
100	104 <u>+</u> 0.4	2819 <u>+</u> 152		