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Executive Summary

The draft Revised Up-and-Down Procedure guideline recommends profile likelihood methods, using
established theory, for most instances where confidence intervas can be obtained. These are widely
used methods that take into account uncertainty in the mean of the population from which the data are
drawn. While other types of intervals could have been developed (e.g., bootstrap, isotonic, Bayesan),
profile likelihood methods are often used for their practicality and were reedily available when the
originaly proposed Up-and-Down Procedure supplemental test for dope and confidence interval was
deleted.

Data gathered under the Revised Up-and-Down Procedure fal into one of five scenarios. Simulations
are provided for the performance of the Revised Up-and-Down Procedure in these five cases.
Simulations and the fundamental mathematica structure have indicated that in three of these scenarios,
standard probit procedures cannot be applied with data generated using the Revised Up-and-Down
Procedure. (This can aso happen with other multi-treatment-level designs)) Therefore, specid
satistica procedures are proposed for use in these cases. The point estimates are specified in the test
guiddine. These circumstances dso define availability of the profile likelihood confidence interva and
speciad procedures are proposed for interval estimation.

Cdculation of the profile likelihood requires maximizing the likelihood function while holding the term for
the LD50 at afixed assumed vaue. At each fixed assumed LDS0, the likelihood will be maximized by
some particular vaue of the dope. Calculation of the profile likelihood confidence intervas requires
cdculaing the profile likelihood for different values of fixed assumed LD50s with their corresponding
profile maximizing dopes and finding the value for which the profile likelihood equas a criticd vaue,
This is a computationa ly-intensive procedure. Consequently, specia-purpose software has been
developed.

Each of the methods considered can be gpplied in some scenarios but not in others. Inasmall
percentage of cases no confidence interva would be provided.






1.0 Performance and Confidence Intervalsfor the Revised Up-and-Down Procedur e for
Acute Oral Toxicity

1.1  Background and History

Cdculation of confidence intervals gives the user abasis for evauating how to incorporate test results
into regulatory gpplications. Therefore, aconfidence interva caculation was included in previous
versions of the Up-and-Down Procedure (UDP) guiddine (both OECD 1998 and ASTM 1998 and
prior). Following deletion of the proposed supplementa procedure from the previous draft Revised
UDP, another method was needed to assist the investigator using the UDP to caculate a confidence
interval.

The gatistical procedure in the previous version of OECD Test Guiddine 425 did not produce atrue
confidence interval because it rdied on an assumed vaue of sigma (the dope parameter). This
limitation was pointed out in Bruce (1985) and by the ICCVAM UDP Peer Pand (July 2000). While
the calculation of the LD50 estimate proposed for the Revised UDP aso uses an assumed sigma, a
Separate Satigtica procedure is proposed for obtaining the confidence intervas for the data. This
confidence interva procedure does not rely on the assumed vaue of sigma.

A provision for confidence interval calculation has been added to the Satigtica analysis of the LD50
estimate from the Up-and- Down Procedure (UDP). Information on the qudity of a point estimate and
the data from which it is derived are important in understanding the outcome of the test. A confidence
interval can be viewed as providing plausible bounds on the value of the LD50 based on the data
collected in the particular sudy. A description of the added feature for caculation of confidence
intervals has been inserted at paragraph 40 in the latest revison of the UDP guiddine.

An OECD expert group agreed with the addition of the feature for caculation of confidence intervals.
Subsequently, the Acute Toxicity Working Group (ATWG) decided to bring the confidence interval
insertion to the UDP Peer Pand for comment. Pursuant to these events, a government contract for
software development wasiinitiated. The software package for the main test provides () information to
the experimenter on how many animas are to be dosed and (b) the statistical procedure for estimating
the LD50 and confidence interva. A plan for verification of the software package isincluded in Section
3.0 of this document.

1.2  Regulatory Applications of Confidence Intervals



Statidticians digtinguish between point and interva estimation of parameters. Point estimation resultsin
asgngle value estimate for a parameter, as provided, for example, by the UDP procedure for estimating
the LD50. Interva estimation is expressed in alower and upper bound for an interva that has a known
probability of containing the true value of the parameter. That probability is called the confidence
coefficient.

To compute a confidence interva, a gatistical agorithm needs both the desired confidence coefficient
and the experimentd data. In the case of the UDP, the experimenta data are the doses and responses.
The statisticd dgorithm is designed to compute a 95% confidence intervd, which isthe typicd
confidence coefficient in datistical practice. However, the agorithm is not exact but gpproximate, so
that in some Stuations, the interva will not provide the desired coverage or may provide more than the
desred coverage. The results from smulation studiesin Appendices A and B of this document will be
useful for experimenters to assessif the data and estimated L D50 are producing confidence intervas
that are in the same range as Smulated intervals that have the desired coverage.

At a given confidence coefficient, the width of the confidence interva is aresult of the underlying
variability in the dose-response curve. Wider intervasimply less precison in the estimate of the LDS0,
and dso that replications of this experiment with the same compound and anima species under identical
conditions could produce meaningfully different LD50 estimates. Moreover, in comparing two different
chemica compounds, the widths and locations of the associated confidence intervals provide an
indication as to whether the data used to estimate the LD50s lead to estimates precise enough to
consider one chemical's LD50 larger or smdler than the other.

Confidence intervas, provided they can be ca culated, describe the range of etimatesthat are
consstent with the data seen. In addition, when comparisons of compounds are made usng estimated
LD50s, confidence intervas give a sense of the robustness of the comparisons. Consequently, any
confidence interva is seen as adding descriptively to the data at hand and is not used to exclude
informetion.

Weight-of-evidence ddiberations for risk assessments dready rely on confidence intervas together with
other study details and results. Hazard identification aso relies on confidence intervas to assessthe
meaning of |lethdity estimates. Such regulatory determinationsinclude:

! decisions about specid packaging requirements for products to which children might be
exposed,

! registration and reregigtration of pesticides,

1 review of potentiad hazard or risk of chemicals to endangered species, and

! hazard identification for consumer and industria chemicals and mixtures.

Other regulatory ingtances where confidence intervals are reported include assignment of chemicals or
mixtures to toxicity categories used in the regulation of workplace or consumer products, as well asin:



I development of Acute Exposure Guiddine Levels (AEGLS, any of three ceiling
arborne exposure vaues for the generd public gpplicable to emergency exposure
periods ranging from less than one hour to eight hours);

I routine decisions about child-resstant packaging and labeling;

1 classfication of substances (e.g., pesticide active ingredients-technica grade);

1 for determining hazardous materids (HAZMAT) categoriesin trangport;

1 classfication of industrid chemicds used in the workplace; and

1 classfication of mixtures such as pesticide and end-use products (the formul ated
product).

1.3  Examplesof Regulatory Applications of Confidence Intervals
1.3.1 U.S Consumer Product Safety Commission

Application of Confidence Interval in Evauation of Hazard and Risk

The confidence interval isimportant for appropriate evauation and use of acute toxicity data. An LD50
with anarrow confidence interva that falls within a classfication class criteria can be used rdiably,
whereas an LD50 with avery wide confidence interva (2 mg/kg to 5000 mg/kg) spanning multiple

class criteriahas to be used very judicioudy. The use of numerica vaues of the LD50 estimate along
with the caculated confidence interva becomes more important in arisk assessment (likelihood of
injury/illness determination) or when the toxicities of two substances are compared.

The confidence intervd isan integra part of adatigtica evaduation of toxicity dataand its use will be
increasingly more important since the number of animals used in testing is being decreased for anima
welfare reasons. The number of animas used in atest impacts the Sze of the confidence interva.
Generdly, when fewer animas are used, the confidence interva iswider. The width of the confidence
interval would determine appropriate use of the data for classfication purposes, in risk assessment, or
for comparison of toxic potentia of two substances, etc.

Reaulatory Citations for Acute Toxicity Dataincluding Confidence Intervas.

For a substance to be defined as * hazardous substance’, the Consumer Product Safety Commission
under its Federal Hazardous Substances Act (FHSA, 16 CFR 1500.3) requires a two-part
determination: 1) that a substance/product has a toxic property, and 2) that it may cause substantia
persond injury or substantid illness during or as a proximate result of any customary or reasonably
foreseeable handling or use, including reasonably foreseeable ingestion by children. Thetoxicity data



should be gatigtically sgnificant and shdl be in conformity with good pharmacological practices. A
toxicity numerica vaue such as an LD50 should be accompanied by an index of variability such asa
confidenceinterva.

The Commission aso enforces the Poison Prevention Packaging Act (PPPA). The PPPA regulations
for exemptions (16 CFR 1700.9 (a)(4)) State:

“(4) In view of the fact that LD50 vaues in themsalves do not necessarily reflect atrue
estimate of the overdl toxic potentid of a substance, LD50 determinations should,
where an LD50 value may be caculated, include:

() The LD50 vaue with 95 percent confidence limits; (ii) adope determination for the
dose response curve, including 95 percent confidence limits; and (iii) a description of
the statistical method employed in the analysis of such data (with proper citation) as
well asthe detidticd andyssitsdf.”

1.3.2 U.S Environmenta Protection Agency (EPA)

Requlatory Citations for Pesticides under Federal Insecticide, Fungicide, and Rodenticide Act
(FIFRA):

40 CFR 158.80 sets forth generd policy for acceptability of dataasfollows.

"In evauating experimenta design, the Agency will consder whether generdly accepted
methods were used, sufficient numbers of measurements were made to achieve
datidicd rdiability, and sufficient controls were built into al phases of the experiment.
The Agency will evauate the conduct of each experiment in terms of whether the study
was conducted in conformance with the design, good laboratory practices were
observed, and results were reproducible.”

At 40 CFR 158.202(e)(1) for human hedlth:

"Determination of acute ord, dermd and inhaation toxicity isusudly theinitid sepin
the assessment and evauation of the toxic potentia of a pesticide. These data provide
information on hedlth hazards likely to arise soon after, and as aresult of short term
exposure. Datafrom acute studies serve as abasis for classification and precautionary
labeling.”

At 40 CFR 158.202 (h)(2) for nontarget organisms in the environment:

"The short term acute laboratory studies ... are used to establish acute toxicity levels of
the active ingredient to the test organisms; to compare toxicity information with



measured or estimated pesticide resdues in the environment in order to assess potentia
impacts on fish, wildlife and other nontarget organisms; and to indicate whether further
laboratory and/or field studies are needed.”

Hazard Classfication and Risk Assessment of Pesticide Formulations for Human Hedth:

40 CFR 156.10 provides for hazard labeling of pesticides; Part 152.160 provides for classification of
pesticides; and Parts 152.170, 152.171, and 152.175 provide for restricted use of pesticides.
Higtoricdly, Agency reviewers have tended to consder only the LD50 vaue in assgning a pesticide
formulation to atoxicity category intermsof itsora or dermd toxicity. The traditiona acute toxicity
study could be relied upon to provide relaively managegble confidence intervas. Confidence limits
associated with the LD50 vaues have generdly been reported by the performing laboratories. They
are usudly included in Agency review summaries.

This Stuation has changed. With the use of acute toxicity testing protocols that minimize the numbers of
animals tested, it becomes more important for Agency toxicologists to congider not only the findings of
asudy, but dso itsinherent gtatistical limitations, in any interpretation and regulatory decison. Asa
result, in a Stuation where an LD50 estimate falls so close to a classfication boundary that the
confidence limits (or bracketing range) include vaues well below the boundary vaue, Agency reviewers
must take a conservative gpproach, and classify the test materia in the more toxic category. Under
these circumstances, the toxicology reviewers would normally fed comfortable with the use of 90%
confidence limits, as there would then be only a 5% probability that the L D50 vaue would be below
the lowest vdue of the confidence interva range. However, they would aso have to take into
condderation the presence or absence of symptoms of toxicity in the test animals, particularly in
Stuations when severe and/or life-threatening reactions occur at lower dose levels with subsequent
recovery and no mortality.

FIFRA Section 25(c)(3) authorizes the Agency to establish Child-Resistant Packaging (CRP)
gandards, consstent with those under the authority of the Poison Prevention Packaging Act (Public
Law 91-601), to protect children from serious injury or illness resulting from accidenta ingestion or
contact with pesticides. CRP isrequired for residential use products with an LD50 vaue of 1500
mg/kg and less, or meeting any of the other toxicity criteriain 40 CFR 157.22(q). If thereisa $5%
probability that the ordl LD50 valueisat or lower than 1500 mg/kg, then atoxicology reviewer would
recommend the use of CRP. Taking into consderation the emphasis on protecting children from
seriousinjury or illness, an Agency toxicologist would aso eva uate the occurrence and severity of
toxicologica symptomsin an acute oral LD50 study at doses below which mortdity occurs.

Environmental Assessment of Pedticides

Confidence intervals are used in risk assessment for the same purpose asin generd datistics to express
the "leve of confidence' that a sample mean (or other summary statistic) represents the true population
mean. Toxicity tests performed for regulatory purposestypicdly are limited in severd ways (i.e,



sample size, sandardized laboratory conditions, etc.). For these reasons, a sample mean (or Satistic
such as LD50) is generdly only avery rough estimate of the actua population being sampled in the test.
The confidence interva in this case does describe the leve of confidence in the true value, but also
serves the reader as a measure of the utility of thetest overdl. Confidence intervals support compliance
with Agency Qudity Assurance/Qudity Control (QA/QC) principles of precison. Confidence intervas
are principally a data QA/QC measure. Point estimates should not to be reported without some
measure of precison. Moreover the Agency's QA/QC poalicies state that the Agency isto use data of
known precison. Inrating atest result submitted for registration or re-regigtration of a pesticide, the
confidence interva can be consdered dong with other measures of the vaidity of the test such as
availability of dose response of the test population's tolerance to the pesticide.

Traditiondly, toxicity tests for nontarget species are designed to address "dose response” and a narrow
confidence intervd is an indication of how well a"dose response” was achieved in the study. If the
precision of an obtained LD50 study isinadequate, the Agency needs to know that. A good
understanding of "dose response”’ isaso useful in risk assessment for extrgpolating effects across
species and establishing distributional bounds for probabilistic assessments.

The Agency plans to develop methods for probabilistic risk assessments for pesticides which will use
confidence intervals from acute tests of nontarget species to describe uncertainty. The uncertainty in the
LD50 edimate is an important component in estimating the overdl uncertainty in a probabilistic risk
assessment. Confidence intervas are necessary for estimating the overdl uncertainty/variability in a
digribution of risk.

Endangered Species Assessments for Pedticides:

Confidence intervas for the LD50 vaue are not directly used in ng effects on endangered
gpecies because the intent for endangered speciesisto protect individuas and not smply the typica
representative (i.e., a the population mean). The dope dlows the reviewer to determine any mitigation
provisons needed to attain an endangered species no-effect leve, which iswhat is necessary under the
Endangered Species Act. No-effect levels, such as can be obtained by using the dope in conjunction
with the LD50, are used for this purpose. Absent ardiable estimate of the no-effect leve, a safety
factor is applied to the LD50 value, and the rdliability of the LD50 vaue, asindicated by the confidence
intervasis an important fegture of the test results.

Setting Acute Ex re Guiddine Leveds under the Superfund Amendment and Reauthorization Act
(SARA):

Acute Exposure Guideline Level-3 (AEGL-3, one of three ceiling airborne exposure vaues for the
generd public gpplicable to emergency exposure periods ranging from less than one hour to eight hours
) is the airborne concentration (expressed as ppm and mg/m?) of a substance at or above whichiit is
predicted that the generd population, including "susceptible” but excluding "hypersusceptible”
individuas, could experience life-threatening effects or deeth. Airborne concentrations below AEGL-3



but at or above AEGL -2 represent exposure levels which may cause irreversible or other serious,
long-lasting effects or impaired ability to escape.

When aconfidence interva is available for an LD50, it may be used to discriminate between studies for
use in development of an AEGL -3, to decide whether a study can be used for cdculating the LCOL that
isthe bassfor an AEGL-3, or to determine the uncertainty factor in caculation.

U.S. EPA’s Pdlicy for Risk Characterization:

The U.S. EPA's Science Policy Council recently issued a Risk Characterization Handbook (EPA 100-
B-00-002, Dec. 2000). It focuses on how to integrate "information from the ... components of the risk
assessment and [synthesize] an overdl conclusion about risk that is complete, informative, and useful for
decison makers." Here are some excerpts.

(p. 12) "The overdl risk characterization lets the manager, and others, know why the U.S. EPA
assesed therisk the way it did in terms of the available data and its analys's, uncertainties, dternative
analyses, and the choices made. A good risk characterization will restate the scope of the assessment,
express results clearly, articulate mgjor assumptions and uncertainties, identify reasonable aternative
interpretations, and separate scientific conclusions from policy judgments.”

(p. 13) "Risk characterization communicates the key findings and the strengths and wesknesses of the
assessment through a conscious and deliberate transparent effort to bring al the important
congderations about risk into an integrated analysis by being clear, condgstent and reasonable.
Remember, though, unless you actudly characterize the assessment, the risk assessment is not complete
- - risk characterization is an integrd component of every risk assessment. As an example, just giving
the quantitative risk estimate (‘the number’) is not arisk characterization.”

(p. 21) ™Y our specific responsihilities [as a Risk Assessor] are to:

...d) Describe the uncertainties inherent in the risk assessment and the default positions used to address
these uncertainties or ggps in the assessment

...f) Put this risk assessment into a context with other smilar risks that are available to you and describe
how therisk estimated for this stressor, agent or site compares to others regulated by EPA™

(p. 36) "[Elements that affect a Risk Characterization include):
..f) Variability (Section 3.2.7)
0) Uncertainty (Section 3.2.8)..."

(p. 37) "For each stage of the assessment for human hedlth or ecologica risks, the assessor identifies:



a) The studies available and how robust they are (e.g., have the findings been repeated in an
independent 1ab)

b) The mgor risk estimates cal culated, the assumptions and the extragpol ations made during the
estimated risk cdculations, and the residud uncertainties and their impact on the range of plaugible risk
edimates. Y our description of the risk estimate should indicate what you are ng (e.g., individua,
population, ecosystem) and include such things as the high end and central tendency estimates.

..T) Variability (see Section 3.2.7)"
(p- 40) "3.2.7 How Do | Address Variability?

The risk assessor should strive to distinguish between variability and uncertainty to the extent possible
(see 3.2.8 for adiscusson of uncertainty). Variability arises from true heterogeneity in characteristics
such as dose-response differences within a population, or differencesin contaminant levelsin the
environment. The vaues of some variables used in an assessment change with time and space, or
across the population whose exposure is being estimated.  Assessments should address the resulting
variability in doses received by the target population. Individua exposure, dose, and risk can vary
widdy in alarge population. Centra tendency and high end individua risk descriptors capture the
variability in exposure lifestyles, and other factors that lead to a distribution of risk across a population.”

"3.2.8 How Do | Address Uncertainty?

Uncertainty represents lack of knowledge about factors such as adverse effects of contaminant levels
which may be reduced with additiond study. Generdly, risk assessments carry severd categories of
uncertainty, and each merits consderation. Measurement uncertainty refers to the usud error that
accompanies scientific measurements -- stlandard statistical techniques can often be used to express
measurement uncertainty...”

14 Calculation of Confidence Intervalsfor the Revised UDP
Inserted text a paragraph 40 of the Revised UDP states:

“40. Following the main test and estimated L D50 caculation, it may be possible to
compute interva estimates for the LD50 a specified confidence using a profile-
likelihood-based computationa procedure. Such an intervd utilizes information from
the doses where accumulated response was neither 0% nor 100% (intermediate

doses). Ingtead of employing an assumed sigma, however, the procedure identifies
bounds on LD50 estimates from aratio of likelihood functions optimized over sigma
(profilelikelihoods). Procedures are aso included for certain circumstances where no
intermediate doses exigt (for instance, when testing has proceeded through awide range
of doseswith no reversal or where doses are so widdly spaced that each animal

10



provides areversd). Implementing this set of procedures requires specidized
computation which is either by use of a dedicated program to be available from OECD
or developed following technicd details avallable from OECD.”

For many or most studies conducted according to the Revised UDP, standard probit cal culations will
not be able to provide the basis for a confidence interva. Instead, the Revised UDP uses profile
likelihood methods based on established theory for most instances where confidence intervals can be
obtained. These are widely used methods that take into account uncertainty in the mean of the
population from which the data are drawn. While other types of intervals could have been developed
(e.g., bootdtrap, isotonic, Bayesan), profile likelihood methods are often used for ther practicality and
were readily available when the originaly proposed UDP supplementa test for dope and confidence
interval was deleted.

Profile likeihood confidence intervas are based on the same kinds of functions as the point estimate,
namdy, thelikelihood function and ratios of that function. In addition, the proposed confidence interva
uses the same distributiond shgpe assumptions as the point estimate, while making no numeric
assumptions about its parameters (i.e., no vaue for sigma isassumed). In order to reduce such
assumptions, this method is computationaly intensive usng modern methods. Consequently, a
specidized program is needed for its implementation. Software will be provided to users on request or
through aweb dte (eg., OECD’s). The OECD Expert Mesting in August 2000 supported this
proposal.

The caculation should and does take advantage of established theory, modern computational methods,
and previoudy used and tested dgorithms (Rao, 1973; Bickd and Doksum, 1977; Crump and Howe,
1985; Meeker and Escobar, 1995) and utilizes knowledge of the full sample of observations. Results
from doses where no or dl animas respond does contribute some information on the LD50, even when
apoint estimate cannot be calculated.

The methodology for this confidence interva has dso been used (previoudy used and tested agorithms)
with estimates beside the L D50, including the limit on a benchmark dose (used in U.S. EPA hedth risk
assessments).

Because smilar intervals behave wel in smilar Stuations, the proposed confidence intervas are
expected to perform gppropriately for the Revised UDP. The term “behaving well” meansthat the
intervals will have at least the Sated coverage probability in smulated trids; thet is, at least 95% of
amulated ‘95% CIs include the true LD50 (see Appendix A).

Just as with the point estimate, there are some circumstances where a standard approach will have
computational problems. For example, as outlined in OECD TG 425 paragraph 42 or Revised UDP
paragraph 37; there may be only increasing or only decreasing doses throughout the test. Certain
solution choices are suggested and included in the specia software.
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15 Peformance Characteristics of the Revised UDP Including Case Examples

Five scenarios or cases can be digtinguished for the purpose of describing the performance of the
Revised UDP asshownin Table 1. Cases 2 and 4 permit estimation of the LD50 and confidence
intervas. Cases 1, 3, and 5 do not permit caculation of either an LD50 using the main method, or a
confidence interval using the profile likelihood method. Some response patterns for these cases do
provide some information about the location of the LD50. More detail on these casesis below.

Case 2 isthe standard two parameter probit estimation Stuation. The case has intermediate response
fractions (a least one animal and less than dl animas respond) a some dose that is less than adose
where there was no response. Typicdly, intermediate response fractions will occur a more than one
dose. Point estimates and confidence intervals are available.

Case 4 has agngle intermediate response fraction occurring between doses that have no response and
doses with complete response. The LD50 can be estimated and confidence intervas can be calculated
for this case.

Case 1 has three possible response patterns. (@) al animals responded, (b) no animals responded, or
(¢) the geometric mean doseis lower for animals that responded than for animasthat did not respond.
Case lasuggests that the LD50 is likely to be lower than the lowest dose while Case 1b suggests that
the LD50 islikely to be greater than the highest dose. Case 1¢ suggests a reverse dose-response
curve, that isfewer responses occur at higher doses. These inferences can be guaranteed to be true,
because response is a chance event.

Case 3 has no intermediate response fractions. At some doses, dl animaswill respond while at lower
doses, no animaswill respond. Thisimpliesthat the LD50 is between highest dose with no response
and the lowest dose where complete response. Any va ue between the two dosesisavaid estimate
for the LD50. No confidence interva can be computed. The Stuation islikely to emerge from a
chemica with avery steep dose-response curve.

There are two possible Stuations for Case 5. One possibility has an intermediate response fraction at
the highest tested dose and no responses at lower doses. This suggests that the LD50 is around the
highest tested dose or possibly greater. The second Situation has partid response at the lowest tested
dose and complete response at higher doses. Here, the LD50 is likely to be a or below the lowest
tested dose. For Case 5 data (as for Case 4 data), the LD50 estimate of the software will be the dose
with partid response. The confidence interva will be caculated using profile likeihood.

As noted above, data gathered using the Revised UDP fdl into one of five types of summary
configurations. Simulations and the fundamental mathematics structure have indicated thet in three of
these configurations, standard probit procedures (e.g., Finney, 1971) cannot be applied with data
generated using the Revised UDP. (This can dso happen with other multi-trestment-level designs.)
Therefore, specia atistical procedures are proposed for use in these cases with the Revised UDP.
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The point estimates are specified in the Revised UDP. These circumstances aso define availability of
the profile likelihood confidence interva and specid procedures are proposed for interva estimation.

Cdculation of the profile likdihood requires maximizing the likeihood (function) while holding the term
for the LD50 at afixed assumed vaue. At each fixed assumed LD50, the likelihood will be maximized
by some particular vaue of the dope. Cdculation of the profile likelihood confidence intervals requires
cdculaing the prafile likelihood for different values of fixed assumed LD50s with their corresponding
profile maximizing dopes and finding the vaue for which the prafile likelihood equas a criticd vaue,
This is a computationaly-intengve procedure. Consequently, these will be incorporated into the
special-purpose software under devel opment.

Each of the methods considered can be applied in some cases but not in others. In asmdl percentage
of cases, no confidence interva would be provided.

These cases are outlined in Table 1 and Figures 1 and 2.
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Table 1. Outcomes of the Up-and-Down Procedure: Cases and Confidence Intervals.
Case# Definition of Case Approach Proposed Possible Findings

1 No positive dose-response association. There | No confidence interval No Satigtica results.
iSNo variation in response; proposed, inference related to Possible inferences:

a) dl animastested in the study responded, or LD50 questionable. 1a) LD50 < lowest dose;

b) none responded, or 1b) LD50 > highest dose;

C) the geometric mean doseis lower for animals 1c) reverse dose-response curve
that responded than for animals that did not

respond.

2 Standard 2-parameter probit estimation. One | Profileloglikeihood The LD50 can be estimated and
or more animals responded at a dose below some | computations are its confidence interva caculated.
other dose where one or more did not respond. sraightforward.

The conditions defining Case 1 do not hold. (The
definition of Case 2 holds if there are 2 doses with
intermediate response fractions, but holds in some
other cases as

well.)

3 No intermediate response fractions. One or Lower bound = highest test dose | High confidence thet the true
more test doses is associated with 0% response with 0% response. LD50 fals between the two
and one or more is associated with 100% Upper bound = lowest test dose | bounding doses. Highest dose
response (al of the latter being greater than dl of with 100% response. with 0% response < LD50 <
the former), and no test doses are associated with lowest dose with 100%
an intermedi ate response fraction. response.

4 One partial response fraction, first subcase. Profile loglikelihood calculations | The LD50 can be estimated and
Like Case 3 except that an intermediate response | to be extended to this case by its confidence interva calculated.
fractionisobserved at asingletest dose. That Specia computations.
dose is greater than doses associated with 0%
response and lower than doses associated with
100% response.
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One partial response fraction, second Profile loglikdlihood cdculaions | The LD50 is estimated and its
subcase. Thereisasngle dose associated with to be extended to this case by confidence interval caculated.
partid response, which is éther the highest test gpeciad computations Possble inference: the LDS0 is
dose (with no responses at al other test doses) or near the dose with the

the lowest test dose (with 100% response & all intermediate response fraction.
other test doses).
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Figure 1. Predicted Percentage of Cases- L D50 equal to 1500 mg/kg.
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Figure 2. Predicted Percentage of Cases- L D50 equal to 3500 mg/kg.
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20 LD50 Confidence Boundsfor Revised UDP: Statigtical Approach and Performance
Characterization

21  Background.

This section addresses the implementation of confidence bounds for the LD50, for use with acute
toxicity data generated in accordance with the Revised UDP. Simulations presented in this document
indicate that in alarge proportion of cases, standard probit procedures (e.g., Finney, 1971) cannot be
applied with data generated using OECD TG 425. Therefore, specia statistical procedures are
proposed for use with the Up-and-Down Procedure for LD50.

The purpose of this section is to provide an overview of the procedures proposed. Also, smulations
are reported to evaluate the performance of the methods proposed. Performanceis characterized in
terms of the widths of confidence intervas, and in terms of “coverage’ probabilities (defined in Section
2.2).

Based on simulations (Section 2.6), it appears that in most cases it will be possible to compute a
confidence interva with acceptable performance by one of two methods. In cases where no animas
respond at some doses, and all animals respond at some other doses (the latter being greater than the
former), the lower bound for the LD50 will be the highest dose associated with no observed responses.
Similarly, the upper bound will be the lowest dose associated with response for al animalstested at that
dose. In most other cases, it will be possible to compute a bound using the method of profile likelihood
(Section 2.4). In particular, it appears that the profile likelihood approach is applicable in most cases
where there is only one dose with an intermediate response fraction (neither 0% nor 100% responding),
acase that is not handled by standard probit methods. (Proposds for handling various cases are
summarized in Section 2.3)

The confidence interval procedures are to be made available in software developed for support of the
Revised UDP. The software will aso provide point estimates of the LD50 as indicated in the Revised
UDP and will evauate stopping criteria

The remainder of this section assumes afamiliarity with standard probit computations as used in
toxicology (Finney, 1971), familiarity with basc satistica procedures (athough the definition of a
confidence intervd is reviewed), and familiarity with the use of Monte Carlo smulation to evauate the
performance of Statistical procedures.

2.2  ConfidenceIntervals. Definition and Related Terminology

Approximate 2-sded 95% confidence intervals will be implemented. Two interpretations of such an
interva will be offered in this section. The definition that is most standard is that the probability is0.95
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that the true value of the parameter of interest (here, the LD50) lieswithin theinterval. Here, the
parameter of interest is viewed as afixed constant and the bounds (being based on data) are viewed as
random (e.g., Soka and Rohlif, 1981, particularly Section 7.3). In order for this definition to be useful,
the probability of 0.95 must hold at least gpproximately over the possible vaues of the parameter of
interest, even though the value of that parameter is not know in a given Situation.

To undergtand thisinterpretation, it may be helpful to reflect on how smulations are used to evduate a
confidence interva (see Section 2.5). In fact, it is common to use smulationsto illustrate the concept of
aconfidence interva (e.g., Soka and Rohlf, 1981, Figure 7.4).

The probability that the upper and lower bound will enclose the true LD50 is defined to be the
coverage of theintervd. If the coverage of anomind 95% intervad is precisgly 95%, then theintervd is
said to be exact. In datigticd practice, it iscommon to use confidence intervals that are not exact but
goproximate. When intervas are approximate, it is sometimes preferred that they be conser vative,
meaning that the coverage exceeds 95%.

A second interpretation can be particularly helpful for understanding the profile likelihood gpproach
proposed here. According to the second interpretation, a confidence interval for a parameter isto be
interpreted as the range of values of the parameter that is consstent with (not excluded by) a particular
dataset. Thus, Cox and Hinkley state (1974, p. 208) that “foremogt is the interpretation that ‘ such and
such parameter values are consstent with the data’ ”  Confidence intervals can be constructed by
inverting datistical hypothesistests, by defining the confidence interva to be the set of parameter vaues
not rglected using the hypothesistest. In particular, the profile likelihood intervals proposed in this
document invert a profile likelihood retio test.

These two approaches are considered to be consistent. A result given in advanced textsisthat a
confidence interval with desired coverage can be obtained by inversion of a hypothesstest (e.g., Cox
and Hinkley, 1974, Section 7.2; Casdllaand Berger, 1990, Section 9.2; Bickel and Doksum, 2001,
Section 4.2).

2.3  Classfication of Casesand Methods Proposed for Particular Cases

Each of the methods considered can be applied in some cases but not in others. Inasmdl percentage
of cases, no method of computing a confidence interva is proposed. It is proposed that the selection of
amethod be based on the classification of cases displayed in Table 2. (Development of this scheme has
benefitted from discussions with the OECD acute avian Satistics group. See Table 2 footnote) The
rationae for the decisonsindicated in thistable is as follows.

Case 1. With the stopping rulesindicated for the Revised UDP, this case appears to be possible only if
testing is stopped at alimit dose (based on non-response for three animals tested in sequence at the
dose). No methods are proposed here for cases where there is not an observabl e relationship between
dose and response. In some cases, a binomid test may be used to establish that the LD50 is above or
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below the range of doses tested, but a Significant binomid test requires testing of five or more animas a
the same dose, and binomia tests use only data from a single test dose. Some procedures that may be
gpplicable in this case have been developed for avian

Table 2. Classification of Data Casesfor Purposes of Confidence I nterval Computation
for Case 5
Case# Definition of Case Approach Proposed

1 No positive dose-response association. no confidence interval proposed,
Thereisno variaion in response (al animas inference related to LD50
tested in the study responded, or none questionable.
responded), or the geometric mean doseis
lower for animals responding than for animals
not responding

2 Standard 2-parameter probit estimation. profile loglikelihood computations are
One or more animals responded at a dose graightforward
below some other dose where one or more
animas did not respond. The conditions
defining Case 1 do not hold. (The definition
holdsif there are two doses with intermediate
response fractions, but holds in some other
cases aswdll.)

3 No intermediate response fractions. Oneor | lower bound = highest test dose with
more test dosesis associated with 0% 0% response.
responses and one or more test dosesis upper bound = lowest test dose with
associated with 100% responses (dl of the 100% responses.
|atter being grester than al of the former), and
no test doses are associated with an
intermediiate response fraction.

4 One partial responsefraction, first profile loglikeihood calculations to be
subcase. Like Case 3, except that an extended to this case by specia
intermediate response fraction isobserved at a | computations
sngletest dose. That doseis greater than
doses associated with 0% responses and lower
than doses associated with 100% responses.

5 One partial response fraction, second profile loglikelihood caculationsto be
subcase. Thereisasingle dose associated extended to this case by specid
with partid response, which isether the highest | computations
test dose (with no responses at al other test
doses) or the lowest test dose (with 100%
responses at all other test doses).
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acute testing (report in press).

Case 2. In cases where standard probit computations can be applied, it appears that application of the
profile likelihood (described in Section 2.4) will be straightforward. The profile likelihood approach is
dready used in this Stuation in the U.S. EPA benchmark dose software.

It is common to require, as a condition for probit analyss, that there are at least two test doses with
partia response fractions (response fractions not 0% and not 100%). Case 2 as defined here includes
al the cases with at least two partia response fractions, but includes other casesaswell. Inthe
definition of Case 2, one or more animals respond a some dose, such that one or more do not respond
at some higher dose (Silvapulle, 1981).

In addition, the geometric mean dose must be higher for animas that respond than for animas that do
not respond. The second condition isindicated in Revised UDP as arequirement for inferences
regarding the LDS0.

In stlandard probit analys's, bounds of a confidence interval may beinfinite. The standard approach for
detecting whether the bounds are infinite is based on atest of the satistical significance of the dope
parameter. An analogous procedure can be used with the profile likelihood approach.

Case 3. When there are no partid response fractions (dlong with other requirements of the case, as
indicated in Table 2), for technica reasons the profile loglikelihood approach apparently cannot be
goplied in agraightforward manner. In this casg, it ssems that any dose within the interval bounded by
the highest dose with no responses, and the lowest dose with 100% responses, would be about equaly
vaid as an estimate of the LD50. 1t seems naturd to consider whether those two doses can function in
practice as an gpproximate confidence interval, and there does not appear to be any dternative for
defining boundsin this case.

For Case 3, the proposed bounds are not designed to achieve a specific confidence level. Rather, the
gpproach isto ask what is the redized confidence levd, if bounds are computed in a certain way.

Case 4. When thereisasngle partid response (dong with other requirements for the case, as
indicated in Table 2), the profile loglikdihood can be applied using specid computations devel oped by
the ICCVAM Acute Toxicity Working Group. Some technica details are given in Appendix A..

Case 5. Thisisan infrequent case, which appearsto occur primarily when an LDS0 iscloseto a
bound. Table 3isan example of Case 5, generated in asmulation of the Revised UDP.
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Table3. Exampleof Caseb.

dose (mg/kg) number tested number responding
1.0 6 5
1.5 2 2

In the smulations, test doses are restricted to the range 1-5000 mg/kg. For the result displayed in
Table 3, testing was probably stopped when three animas tested in sequence at 1 mg/kg al responded.

It could be concluded that the LD50 is more than likely to be below 1.5 mg/kg. A profile likelihood
calculation can be done.

2.4. Confidencelntervals Based on Profile Likelihood

This section provides a non-mathematica overview of profile likelihood computations proposed for use
when the data from a given study is assigned to Case 2 or Case 4. The methods areillustrated using
hypothetical data sets, which were generated in smulations of the Revised UDP.

Some technicd details and formulae are provided in Appendix A. The materid in this section is not
needed in order to understand the evauation of performance of the methods usng smulations, which is
found in the sections thet follow. However, it is desrable to understand the following points. Fird, the
type of bounds proposed will be infinite in some cases. More precisdly, both the upper bound and
lower bound will be finite or both bounds will be infinite. Thisisasin standard probit analysis. Second,
the methods proposed cannot be implemented by plugging datainto aformula. Specidized computing
skills such as numerica optimization are required for implementation. For the numerica aspects, there
are multiple dternative dgorithms that may be used without actudly changing the Satistical gpproach.

Explicit descriptions of the profile likelihood gpproach are found in Barndorff-Nielsen (1991),
Davidson and MacKinnon (1993), and Meeker and Escobar (1995), among other sources. Implicit
justification for the gpproach is found in any theoreticd statistics book if it is noted that (1) confidence
intervals can be congtructed by inverting statistical tests (Section 2.2) and (i) the method proposed
inverts alikelihood ratio test that is ordinarily presented. (These references are somewhat technical.
The point here isto confirm that the genera type of approach suggested iswell established in datistics))
The method has been widdly used in connection with nonlinear statistical models, and descriptions can
be found in literature associated with various applications. Barndorff-Nielsen (1991) usesthe term
profile likelihood to denote the particular variant of alikelihood function that is used here, while other
authors do not specificaly name that variant. Barndorff-Nielsen (1991) aso reviews refinements of the
approach.

According to the approach proposed, statistical results are based on likelihood curves. Figures 3 and 4

provide two examples of likelihood curves, based on hypothetica dataexamples. Formulae for the
likelihood curves are provided in Appendix A. Points to be emphasized
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Figure 3. Likdihood Curvefor Example 1.
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Figure4. Likdihood curvefor Example 2.
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include that each distinct data set is associated with adistinct likelihood curve, from which can be read
the statistical results (confidence bounds as well as a point estimate) for that data set. The likelihood
curve also depends on the type of dose-response function that has been assumed. Revised UDP
specifies the use of probit models. A logit model would aso have an LD50 and adope, closaly
analogous to the probit LD50 and probit dope, but for a given data set the likelihood curves for a probit
model and alogit model would not be identical.

For present purposes, it is helpful to think of the likelihood curve as providing levels of relative support

that a specific data set give to different choices of parameter vaues (Edwards, 1992). In particular, the

L D50 vaue with highest likelihood is the maximum likelihood estimate (MLE) and may be considered
for apoint estimate. (However, Revised UDP specifies that the LD50 point estimate will beaMLE

based on an assumed dope.) It turns out that standard probit cal culations generate maximum likelihood
esimates athough the likelihood is not computed explicitly (Finney, 1971).

If this notion of likelihood-as-support to calculation of confidence bounds is extended, it seems that
vaues insde the confidence interva should have higher likelihood than values outsde the intervad. The
upper and lower bounds for the confidence intervd, it seems, should have equd likelihood (see Figure
3). Thisnotion isthe basis of the graphica gpproach described with the following examples.
Example 1. Thefollowing datawere generated in a smulation of Revised UDP..

Table4. Examplewith a Single Partial Response Dose.

dose (mg/kQ) number tested number responding
175.0 2 0
553.4 3 2
1750.0 1 1

likelihood vaues (see text for explanation)

maximized loglikelihood =-1.910

loglikelihood for bounds =-3.830=-1.91 - 1.92

95% CI for the LD50 = 93 - 2258 mg/kg based on method of profile likelihood

Herethereisonly a single partia-response dose and so standard probit programs cannot be used to
generate an etimate of the LD50. The likelihood curve associated with these datais displayed in
Figure 3 [the naturd log of the likelihood is graphed. Use of In(likelihood) is conventiond in datistics
for computations with likelihoods]

The confidence bounds can be computed graphicaly usng Figure 3, by the following steps:

(1) There aretwo parametersin the probit modd, namely the dope and LD50, but the curve displayed
isafunction of the LD50 only. A 2-parameter likelihood can be defined which can be graphed in three

26



dimensions. In the context of Revised UDP, the LD50 is of primary interest. In this context, the dope
issaid to be a nuisance parameter. Therefore, it does seem useful to obtain alikelihood curve for the
LD50 done, if thet ispossible.

One way to eiminate the dope, as used in Revised UDP point estimation and stopping rules, would
have been to assume avaue for the dope. Here, a more computationaly intensive approach has been
used. The gpproach proposed is the detail that defines the profile likelihood gpproach specificdly, asa
type of likelihood approach. According to the profile likelihood approach, at each vaue of the LD50
the dope valueis used that maximizes the 2-parameter likelihood.

Since the profile likdihood curve is the only likelihood curve that will be used in this document, the
profile likelihood (for the LD50 diminating the dope) will be referred to as “the likelihood curve’
athough, to be more exact, it should be referred to as the “profile likelihood curve.”

(2) For the hypothetica data, the likelihood function has a pesk where the log(LD50) has the value of
gpproximatdly 2.7 (i.e,, a an LD50 vaue of 553 mg/kg). Note that the value of 553.4 mg/kg isthe
middle dose in this example, the dose with an intermediate response fraction. This value would not be a
bad choice of a point estimate for the LD50 for these data.

(3) The subsequent computations require the pesk vaue of the In(likelihood). In this particular
example, gpecid computations are needed to get the maximized (peak) In(likelihood), which are
presented in Appendix A. For the data consdered here, these computations yield avaue of -1.91 for
the maximized In(likelihood), which is evidently consstent with the curve in Figure 3. In caseswhere
standard probit ca culations can be gpplied, computation of the maximized In(likelihood) involves a
different procedure, asin Example 2 below.

(4) An gpproximate lower bound for the LD50 can be read from the likelihood curve asfollows. A
horizontd line is drawn at a (log) likelihood vaue of -3.83, avaue which is computed with aformula
below. Referring to Figure 3, thislineis seen to intersect the likelihood curve to the left of the curve
peak, a an LD50 vaue of 92 mg/kg (log,o( 92)=1.965). Therefore, the value of 92 mg/kg is taken to
be the lower bound for the LDS50.

A smilar gpproach is used for determining the upper bound of 2258 mg/kg (log,, = 3.35). The upper
bound value is the dose vaue where the horizonta line crosses the likelihood at a second point, to the
right of the point estimate.

The Y -axis vdue of the horizontd line (-3.83 for this example) is caculated with the following formula
which has been developed by mathematicd Satidicians.

In(likelihood) for bound = maximized In(likelihood) - 1.92

For the example, a maximized In(likelihood) vaue of -1.91 has been caculated, so the Y-axis vaue for
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the horizontd lineis-1.91 - 1.92 =-3.83.

In the formula above, the value of 1.92 is gppropriate for computation of a 2-sded 95% interval. A
different value would be used to compute a 90% interva, and so on. Technicaly, the value to be used
is taken from tables (or the eectronic equivaent) of a chi-square distribution with one degree of
freedom.

To see why these computations make sense, reflect again on the notion that the likelihood is a measure
of relative support that the data give to dternative choices of an LD50. The graphical approach
separates the possible choices of an LD50 into two sets based on their likelihoods:. The confidence
interval comprises LD50 candidates with In(likelihood) above the horizontd line, while LD50
candidates outsde the confidence interva have In(likelihood) below the horizontd line. The two
bounds are dose values with equd likelihood. The procedure seems naturd if LD50 candidates with
higher likelihood are regarded as better supported by the data.

(5) Reflection on the procedure just described indicates a possible problem. The likelihood curve was
graphed over afiniterange. The graphica approach assumes that the In(likelihood) remains below the
horizonta line for LD50 vaues not graphed. If not, then the bounds are infinite. However, as
mentioned previoudy, there isaway to determine if the bounds are finite or infinite. Use of the formula
in this case indicates that the bounds are finite.

Example 2. The following hypothetica datawere aso generated in asmulation of Revised UDP.

Tableb. Data for Examplewith Infinite Bounds
dose (mg/kg) number tested number responding
175.00 1 0
553.40 2 0
1750.0 3 1
5000.0 4 1

Probit results: dope = 1.02, estimated L D50=14223 mg/kg

Standard probit calculations (Finney, 1971) can be performed in this case. Probit results for the LD50
and dope are displayed in atable footnote. According to standard probit calculations, the bounds for
the LD50 areinfinite in this case.

The likelihood curve based on these datais displayed in Figure 4.
The curve can be used for the point estimation because the likelihood curve has an unambiguous pesk.
If the graph is plotted over amore narrow range than that used for Figure 4, it can be seen that the

peak actually does correspond to the probit LD50 estimate. In fact, standard probit calculations do
generate the maximum likelihood estimates (Finney, 1971).
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Next we need the maximized In(likelihood). In this case, the computations are different from those used
for Example 1. When the stlandard probit calculations gpply (asin this example but not in Example 1),
the maximized In(likelihood) is computed by plugging the probit estimates of the dope and LDS0 into
the two-parameter likelihood formula. The two-parameter likelihood formulais given in Appendix A.

Asin Example 1, ahorizonta line can be drawn separated from the peak In(likelihood) by a vaue of
1.92 unitsin the direction of the Y axis. The result of this step isthe lower of two horizontd lines drawn
on the graph (see Figure 4). Inthis case, dthough the likelihood curve dips below the horizonta line,
the set of dose vaues with In(likelihood) above the line (those values not excluded based on our data)
gretchesto infinity in each direction. Congstent with the results of standard probit computations for
this case, the profile likelihood confidence bounds are considered infinite,

Note that if the likelihood curve had been viewed over a narrow range of LD50 values around the
peek, one might have concluded that the upper bound was probably infinite, but might be mided to
suppose that the lower bound isfinite. This problem can be resolved as follows. Observe that in this
case as the LD50 gpproaches infinity in either direction, the likelihood curve approaches a second
horizontd line (refer to Figure 4). Infact, it gopearsthat in al casesthe likelihood curve will approach
some linein thisway, and the location of that line can be determined. (The formulais provided in
Appendix A.) Evidently, the bounds arefiniteif and only if the second line is located below the firgt in
the Y-axis direction.

Computer algorithms, particularly handling of infinite bounds. Despite what these examples may
suggest, it is not proposed that in practice the bounds will be obtained by literdly drawing lineson

graphs. A computer program will be used to perform analogous computations. However,

undergtanding of the graphica approach just given can provide an appreciation of the types of

computer algorithms required to implement the gpproach. Three types of specidized computer

agorithms are evidently needed.

M The approach requires that we compute the maximized value of the In(likelihood). When the
results of astudy fal in Case 2, an optimization (pesk finding) adgorithm isrequired. Standard probit
cdculations (Finney, 1971, Ch. 2) represent an gppropriate optimization agorithm in this case, and that
gpproach has been used in smulations reported in the following sections.

(i) Computation of the bounds requires us to identify values of the LD50 that have specific values
of the In(likelihood). For the smulations reported in this document, a bisection agorithm has been
used.

(iii) In Example 1, it was explained how the dope is diminated from the likelihood function when
using the profile likdihood method. (For agiven vaue of the LD50, use the dope vdue that maximizes
the likeihood.) Consequently, another optimization routineis needed. In smulations, atype of
weighted Gauss-Newton agorithm, also termed a scoring dgorithm, has been used. Thisis atype of
optimization method widely used in Situations such as probit fitting (Nelder and Wedderburn, 1989).
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Each of these three operations involves akind of iterative search procedure, meaning that some kind of
initid guessis developed for aquantity to be computed and that guessis refined in an iterative fashion,
until further refinements seem to have no practica effect. The implementation of these types of
agorithms requires a specidized type of computing skill.

For each of the three operations identified there are various agorithms that may work. The choice of
an dgorithm is not fundamentd to the statistica method, but can affect the performance of a computer
program in some ways. If ardatively poor agorithm does not produce incorrect results, computing
Speed may be dowed, or the dgorithm may occasionally fall to produce results because of a variety of
numerica phenomena

2.5.  Simulation Proceduresfor Measuring the Performance of Confidence Intervals.

In previous work, we have used smulations to eva uate the performance of OECD TG 425 for the
purpose of estimating the LDS0. In these smulations, values were assumed for the dope, LD5S0, and
garting dose, and numerous data sets were smulated. In that Stuation, estimates of the LD50 closeto
the true value are considered desirable. Therefore, performance could be evaluated by considering the
percent of smulated Sudies yieding LD50 estimates in some sense close to the true vaue, say within
some factor of the true value.

Andogous smulation procedures have been used here to eva uate the performance of the proposed
confidence intervals. Aswith previous smulations, vaues are assumed for the LD50, the dope, and the
initid gtarting dose. For a given combination of assumed values of these parameters, we Smulate a
large number of studies. The smulation results are used to compute measures of performance. While
the procedure for smulating data setsisidentica to the procedure used in evauation of point estimates,
different performance indices are computed from the smulated data.

To assess the performance of the confidence intervas, we report four measures of performance, which
are denoted PM 1, PM2, PM3, and PM4 in the tables of smulation results.

PM1. Thisisthe estimated percent of studiesthat have finite confidence bounds. (The bounds are
both finite or both infinite) It is desirable to have narrow confidence bounds, but it is not clear that the
occurrence of very wide bounds should be viewed as a drawback for the method of computing
confidence bounds, versus as a drawback of the study design. In any case, the index seemsto provide
useful information.

PMZ2. Thisisthe coverage, which isthe fraction of studies for which the true LD50 fdlsingde the
confidence interval (above the lower bound and below the upper bound). For each of, say, 1000
smulated studies, the confidence intervas are computed with the procedures proposed, and the study
is scored as elther enclosing the true LD50 or otherwise. PM2 isthen the percent of the 1000
amulated studies with bounds that enclose the true LDS0. In cases where the bounds were infinite,
they were scored as enclosing the true LD50.
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By the definition of a 95% confidence interva, the ided value for PM2is95%. Idedly, PM2 will not
vary when the LD50, dope, and initia test dose are varied.

PM3. PM3 and PM4 are dternative measures of the typica widths of confidence intervas. PM3 is
the median ratio of the upper bound to lower bound. (The ratio upper/lower is computed separately for
each of, say, 1000 smulated studies. PM3 is then the median of the 1000 ratios.)

In cases where the bounds were infinite, the ratio was coded as greater than 1000 (>1000). Ratios that
were finite but greater than 1000 were dso coded as smply >1000. (Otherwise some confidence
intervas with finite bounds would be coded as more narrow than intervas with infinite bounds.) For
many of the situations where adope of 0.5 or 0.8 was smulated, over 50% of smulated studies had
infinite dopes (that is, PM1>50%). (See Table B.2 of Appendix B.) Inthese cases, the value of PM3
is>1000. Inafew cases, PM3 was >1000 when PM 1 is dightly below 50%, because of some
intervas that are very wide but not infinite.

Use of avaue of 1000 is somewhat arbitrary but this choice does not effect the median ratio unlessthe
ratio exceeds 1000 for at least 50% of smulated sudies. We suggest that if the median ratio is greater
than 1000, there is not much practica vaue in quantifying the proportion of confidence intervals with
infinite bounds, versus with bounds that are finite but separated by afactor of 1000 or more.

In severd cases where a steep dope is assumed, PM3isequal to 3.2. Thisisthe ratio of adjacent test
doses, except in some cases where atest doseisalimit dose. In these cases, many data setsfal under
Case 3, for which al doses are associated with either 0% response or 100% responses..

PM4. Thisisasecond measure of typicd width, the median standardized width of the confidence
interval. For each smulated study (say for 1000 smulated studies), we compute the quantity:

upper bound - lower bound

sandardized width of confidenceinterval = 100*
true LD50

Thisratio is computed for each of, say, 1000 smulated studies. PM4 isthen the median of the 1000
standardized widths.

In cases where the bounds were infinite, the standardized width was scored as >100,000. Thisis
comparable to use of a code of >1000 for PM 3 given the approximate relationship between the two
indices.

In interpreting these measures, it may be useful to consider the coverage measure PM2 jointly with
measures of width (PM3 or PM4). If the coverageislarger than 95% and the intervals appear
undesirably wide, then a case can be made for refining the Satistical procedure to yield more narrow
bounds, with coverage closer to theidea vaue of 95%.
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OECD standard simulation scenarios for acute mammalian guidelines. Smulations have been
conducted based on two sets of scenarios. (the term scenario is used to mean a combination of true
LD50, true dope, and initia test dose)

The first set of scenarios comprised 45 combinations of dope and LDS50, with the initial test dose set to
175 mg/kg in eech case. The vaue of 175 mg/kg is the Revised UDP default initid test dose, to be
used when thereis no reliable information to indicate a better initid test dose. The combinations of
dope and LD50 for this set are the same as for the second set.

The second set of scenarios comprises 112 combinations of dope, LD5S0, and initia test doses. This
set of scenarios has been devel oped by OECD workgroups for evauation and comparison of acute
toxicity desgns. For this s, initid test doses were initidly specified in terms of percentiles of the
tolerance digtribution. The test doses were then calculated from the dopes and LD50s. In smulations
of the Revised UDP, test doses are redtricted to the range of 1 to 5000 mg/kg. Therefore,
combinations with an initia test dose outsde that range have been ddleted.

In this set, scenario number 95 has been modified for the smulations reported here, by changing the
initid test dose from 4870 to 4750 mg/kg. The LD50 is 3000 mg/kg for this scenario so that testing
tended to be concentrated on the two doses 4870 and 5000 mg/kg, the latter being the limit dose. The
origind vaue of 4870 mg/kg is unredigticaly close to the limit dose of 5000 mg/kg and the scenario
was unmanagegble numericaly because of alarge number of numerica overflows. When theinitid test
dose was changed to 4750 mg/kg, no further difficulties were encountered. (No numerica problems
were encountered with any of the other scenarios, after some refinements of the dgorithms,)

Additional details of simulation. The performance measures PM1-PM4 were computed only using
data for Cases 2-4, because it isonly for those cases that statistical methods are proposed in this
document. For example, PM1 is then the percent of studiesin Cases 2-4 that have finite intervas.
However, the percentages of studies assigned to different cases were computed using the data for all
Cases.

For each scenario, a minimum of 1000 studies was Smulated. Because confidence intervas were
computed for Cases 2, 3, and 4, the combined number of smulated studies for those 3 cases was fixed
at 1000 for each scenario while the total number smulated studies per scenario was variable but dways
greater than 1000.

Asin previous smulations, the range of test doses has been redtricted to the range of 1 to 5000 mg/kg.
26  Simulation Results

Two types of smulation results are provided in Appendix B.

Table B.1 of Appendix B provides percentages of Cases 1-5 for each scenario. (See Table 2 of this
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Section for the definitions of these cases)) A combined percentage is reported for Cases 1 and 5.
Table B.1 contains the results for both sets of scenarios, those with theinitid test dose fixed at 175
mg/kg and those with initid test dose varied.

The case frequencies are informative regarding how often particular procedures can be applied. In
particular, the low frequency of Case 2 in many scenarios supports our assertion that standard
procedures of probit analysis will often not be applicable with TG 425. Cases 1 and 5 occur with
relatively high frequency when the true LD50 is closeto alimit dose. Thisis probably a consegquence
of instances where a particular sopping ruleis invoked, namely that testing is stopped if three animals
tested in sequence at 5000 mg/kg do not respond, or if three tested in sequence at 1 mg/kg al respond.

The relative frequencies of different cases depends strongly on the dope, for obvious reasons. If the
dope is Seep, then the percentages of animals responding changes from 0% to 100% within a narrow
range of dose vaues, and the possibility for obtaining a partia response percentege therefore reatively
amdl.

Table B.2 provides the values of performance measures PM1-PM4 (defined in Section 2.5) for each
Scenario. Overdl, the results seem to suggest acceptable performance of the methods proposed.

The reaults indicate a strong dependence on the dope. Asthe dopeincrease, the percentage of infinite
boundsislower (PM1), the coverage increase (PM2), and the intervals become more narrow (PM 3,
PMA4).

With regard to coverage (PM2) the ideal valueis 95%, and idedlly the coverage will not depend on the
dope. Therefore, the PM2 vaues of 99%-100%, associated with steep dopes, are not necessarily to
be viewed favorably. However, in the steep-dope situations, the confidence intervas tend to be
narrow (PM3, PM4). Thus, the conservatism of the methods when the dope is steep (as quantified by
PM2) do not seem to represent a serious drawback of the methods proposed.
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3.0 Software
3.1  Purposeand Description

Because the Revised UDP is rdatively complex satisticaly, dedicated software has been devel oped to
integrate al datistica features of the tegt, including @ multiple stopping criteria; b) estimation of an
LD50; and ) provision of confidenceintervas, together with their gppropriate places in the |aboratory
protocol. This software was developed for a Windows environment and is accompanied by a user
manual. The software and manud are designed to be readily understood and implemented by scientists
outsde the U.S. who may have limited facilities and English comprehengion. It will be a sand-done
package designed for andlysis only, with provison for an investigator to creete reports that include
animd identifiers that match those in alaboratory's Sandard data maintenance files, thereby permitting
data verification.

Development of this software is being carried out under contract to the U.S. EPA, through work
assignments 4-06 and 5-03 of Contract No. 68-W7-00285. Building the package follows practice for
verification, which is an abbreviated form of sandard practice such as that outlined by the FDA draft
guidance for industry on generd principles for software vaidation. The FDA guidance Sates.

“Verification is defined in 21 CFR 820.3(aa) as "confirmation by examination and
provison of objective evidence that specified requirements have been fulfilled.” Ina
software devel opment environment, software verification is confirmation that the output
of aparticular phase of development meetsdl of the input requirements for that phase.
Software testing is one of severd verification activities, intended to confirm that
software devel opment output meetsits input requirements. Other verification activities
include wa kthroughs, various static and dynamic anadyses, code and document
ingpections, both informa and forma (design) reviews and other techniques’.

The modd of verification is not unlike the QA/QC Check of the Benchmark Dose System (BMDYS)
Software for the U.S. EPA (Contract No. 68-C9-8007, Work Assignment 1-10, December 1999).

Completion of al congtruction, testing, and documentation is scheduled for summer 2001.
3.2  Quality Assurance/Quality Control

Software requirements are being set out by the U.S. EPA and the contractor regarding environment,
input/output/functions, user interfaces, error handling; design is considering implementation (coding)
issues; and testing will be performed to ascertain that the package does what it is designed to do.
Some of thistesting will bein the form of stressing the program by pushing it to unusua circumstances
(and sample data sets are currently under construction). Some of these data sets generally can be
described by the case descriptionsin section 2 of this document. The sets specifically encompass,
however, such stuations as possible data entry errors and the various stopping circumstances, as well
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asunusua dose magnitudes. Some of it will condtitute Smulations characterizing the behavior of
Revised UDP that can be compared to independently programmed output regarding Revised UDP
behavior. When completed, these activities will congtitute a verification of the andysis package.

At thefirgt stage, an outline of the program has been created, identifying its structure (with data,
cdculation, and report modules, and, for testing, a smulation module), how modules will interact, what
each module will do and, as gppropriate, the mathematics for those operations, enumerating the
possible configurations of data.and which will and will not give numeric solutions, describing messages
(prompts, warning, error) from package to user and their circumstances, and outlining the testing and
smulation processes. Concurrently, an outline of the user manua was delivered.
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Appendix A
Performance Char acteristics of the Revised UDP Point Estimate and Confidence Interval

1.1  LD50 Confidence Boundsfor Revised UDP: Technical Specifications and Numerical
Programming

This appendix provides technica detail and mathematical formulas, and supports technical peer review
and programming.

The preliminary gpproach, described in this Appendix, was to limit the numerical search for abound to
afinite interva above or below a point estimate of the LD50. This approach was used because no
procedure was readily available to determine from the data, a priori, whether the bound isfinite or
infinite. 1t was suggested that the search interval may be made sufficiently wide so that, if abound is
outsde theintervd, it might be congdered infinite for practical purposes.

However, it appears that there is actudly acriterion that can be used to determine whether the bounds
arefinite or infinite. The probit mode can be parameterized in terms of 1 = log,o(LD50) and the dope
($). According to the method of profile likelihood, the decision of whether avaue of L isingde or
outside the confidence interva is made by optimizing the dope parameter with p fixed at the vaue of
interest, and thus obtaining an optimized loglikelihood vaue corresponding to aparticular 1 vaue. The
vaueof W in quegion fdls within the confidence region if and only if the maximized loglikelihood is
greater than or equd to acritica loglikelihood that can be denoted as| ;. The computation of | isas
described in this Appendix.

Asthevaueof p istaken toward infinity in either direction, and the dope is optimized for each vaue of
M, the optimized dope vaue is observed to converge to zero. The loglikdihood is observed to
converge to a vaue that can be computed directly, by substituting for each predicted response

percentage the pooled response percentage Poooled = é_ igzlri / é ilni wherer; and n; arethe

numbers of animals that respond and the number tested at the ith of g dose levels tested.

This behavior can be understood as follows. For definiteness, consider computation of the lower
bound. Asp istaken toward negative infinity, the vaue of $ approaches zero. If $ did not approach
zero, then all of the predicted response probabilities would go to zero. However, the methods are
applied only when some animas respond and others do not. Therefore, $ goesto zero to fit amixture
of animas that responded and did not respond as 1 istaken to infinity. When $ is closeto zero, the
doses become, for purposes of probit analys's, about the same dose.  (For purposes of probit analyss,
the magnitude of dose ratios is consdered relative to the dope.) Therefore, as istaken to infinity and
$ optimized at each vdue of |, thefitted probit line approaches a line connecting the point
(M,probit(0.5)) to the point ( X ,probit(Ppooied)) Where X isthe mean log dose.
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Therefore, the criterion for determining whether or not the bounds arefinite isasfollows. Let |,
denote the value of the loglikelihood computed with each response percentage set equal to Ppooied-
Since the profile loglikelinood will gpproach | .., as 1 approaches + 4, the bounds are finite if and only
if 1o islessthan | .

Figure 3 in Section 2.4 of this document, and the associated discusson of Example 1 ismideading. If
the loglikelihood is graphed over a sufficiently wide range of doses, the loglikelihood is seen not to be
convex and the nonlinear equations that define the bounds have more than two roots. (In the graphs of
Section 2.4 of this document, the curve crosses the line more than twice)) In this case, according to the
criterion just described, the lower bound as well as the upper bound isinfinite, which is aso the result
obtained with the standard probit methods.

1.2  Background. The ATWG proposes to implement confidence bounds for the LD50, for use
with acute toxicity data generated in accordance with the Revised UDP. The method for caculating the
confidence interva will be available in software developed to support the Revised UDP, this software
will dso provide point estimates of the LD50 and will evauate stopping criteria The decison to
develop new confidence interva procedures is based on Ssmulations that indicate that standard
procedures (for analysis of data under a 2-parameter probit model) will very often not be applicable
with data generated according to the Revised UDP. This Appendix is intended to support statistical
peer review of confidence interval procedures, and (subject to modifications based on the review) to
support numerica programming.

Based on smulations presented in Section 2 of this document, it gppears that in most cases it will be
possible to compute a confidence interva using one of two procedures and that these procedures will
have acceptable performance.

In cases where no animals respond at some doses, and dl animals respond at some other doses (the
latter being greater than the former), it is proposed that the lower bound for the LD50 will be the
highest dose associated with no observed response. Similarly, the upper bound will be the lowest dose
associated with responses for al animals tested at the dose.

In most other cases, it will be possible to compute a bound using the method of profile likelihood (see
Barndorff-Nielsen, 1991, Section 10.2.4). In particular, it is proposed that this approach will be used
in most cases where there is only one dose with an intermediate response fraction (neither 0% nor
100% responding), a case that is not handled by standard probit methods. (Proposals for handling
various cases are summarized in Section 1.5 of this Appendix. )

Of the two procedures, the profile likelihood approach is the primary focus of this Appendix. The
approach requires handling of a number of specia cases and specification of other technical detalls.

Although a description of the profile likelihood approach has been included here, this document is
intended to be reviewed primarily by individuas with some background in likelihood based Satistical
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procedures. In addition, it is assumed that readers are familiar with certain types of numerica
techniques (line searching and optimization) as used in implementation of nonlinear datistica modds.

The materia which followsis organized into three sections.

Section 1.3 presents notation, the probit dose-response model, and the profile likelihood approach for
computation of confidence intervals. Comments are provided on dternative parameterizations of the
probit modd.

Section 1.4 discusses numerica dgorithms. Three types of specialized numerica routines are required:
2-dimengond optimization to cadculate maximum-likelihood estimates, line searching to compute
bounds, and 1-dimensiond optimization (nested within the line search).

Section 1.5 presents a classification of cases, with proposas regarding how each caseisto be
handled. Different cases require different confidence interval computations and, for some low-
frequency cases, confidence intervals are not proposed.

1.3  Overview of parametric approach

Notation for describing grouped data. For present purposes, it is convenient for the data to be
summarized by doselevd. Let:

g = number of dose levels tested;

d; =ith doselevel evauated, | = 1,...,. Weassumethat d, islowest test dosg, d, isthe highest,
and so on.

X =log( d;)

n; = number of animalstested at theith doselevd, | = 1,...,0;

r = number of animals observed to respond a the ith doselevd, | = 1,...,0.

While data summarized in this way are convenient for the computations described here, some
computations associated with the stopping rules cannot be calculated from data summarized in this way.

Probit dose-response model. A probit curveisfitted to the data, relating the fraction of animas that
respond and the logarithm of dose. The probit model has two parameters. According to one
parameterization (the parameterization proposed for fina results), the probity parameters are the slope
(say $) and the LD50. For purposes of this document, it is convenient to make use of the parameter
p=log,o( LD50). For likelihood-based statistical procedures such as those used here, it is permissible
to do estimates and confidence intervas directly for i and then transform those results to results for the
LD50.

Let p(x ;u, $) denote the probability of response, where x is the common logarithm of dose. Then an
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expression for the probity modd is:

P(X;, $)=M[(x -p)-$]
where M( z ) denotes the cumulative distribution function (CDF) for a standard normd distribution.

Cadlling the parameter $ a“dope’ isatoxicologica convention. Probity andysisis commonly described
asalinear regression of atransformed response (probity percentage response) againgt the logarithm of
dose. To seethis, rearrange the expression above as follows:

M2 p(x;LD50,$)]= $ -x - $-log,(LD50))

where M " denotes the inverse of function corresponding to M, so that evidently the relationship
between dose and response can be transformed to alinear relationship with dope $ and intercept -
$log,o(L D50)).

Note the use here of the common (base-10) logarithm of dose, which is atoxicologica convention.

For some purposes, the choice of abase for logarithms is arbitrary, but the common logarithm needs to
be used in software designed to support Revised UDP, in order to have comparability of results
obtained with different programs. In particular, the value of the dope estimate will depend on the base
chosen for logarithms.

An dternative parameterization, associated with a particular interpretation of the probity modd, is.

P(X; W, F)=M[(x -u)/F]

where i = log,y(LD50) and F = 1/$. Of course, u and F? are conventiona notation for the mean
and variance of anormd digribution. This parameterization may be preferred particularly when the
probity model isinterpreted in terms of atolerance distribution. According to that interpretation,
variation among test animas in response to a particular doseisrelated to individua variation in
sengtivity to the test substance. The tolerance of asingle individud is defined to be the dose that will
cause that individua to respond, given its sengitivity to the test substance. Then the fraction responding
a agiven dose equds the fraction of individuas with tolerance below that dose. A frequency
digtribution is assumed for variation of tolerances among individuas. The probity formulae result from
assuming alognorma distribution for tolerances, with parameters i and F.

For purposes of the procedures described in this Appendix, the 4, $ parameterization has proved to be
more convenient than the 1, F parameterization. In particular, it appears that widdy different vaues of
F can be associated with dope vaues about equa to zero, and log-likelihood vaues that are not much
different.

Point estimation of the LD50. This Appendix is concerned primarily with interval estimates rather
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than with point estimates. However, the following remarks may help to place in perspective the various
computations that need to be implemented in the software. The purpose of acute testing under the
Revised UDP isto obtain an LD50 estimate. In this context, the probity dope is a nuisance parameter.
Revised UDP specifies that when estimating the LD50, a vaue will be assumed for the dope parameter
(the default assumption isadope of 2) and that the LD50 will be estimated based on the resulting 1-
parameter model usng maximum likelihood. Revised UDP provides an expression for the likelihood
function. The LD50 point estimate is not used in the computations for the confidence interva
developed in this Appendix. Computations for the Revised UDP stopping rule o involve a digtinct
point estimate of the LD50, for different reasons.

Two-parameter and profile log-likelihood functions for grouped data. Likdihood functionsare
functions of model parameters, which are used in gatistica inferences about those parameters. Each
distinct data set yields adigtinct likelihood function. It can be helpful to think of alikelihood function as
measuring the relaive support that the data provide for aternative choices of parameter vaues, with

higher loglikelihood values indicating relaively stronger support. For example, the maximum+-likelihood
estimates of the parameters i and $ are the parameter vaues that maximize the 2-parameter function.

The exact roles of these functions in computation of confidence intervals are described in detail below.

The following two likelihood functions need to be defined for the methods proposed. The log-
likelihood function for the two-parameter probity mode is:

I(mb)=a . {r In(p(x;mb))+(n - r)- In(L- p(x;m,b))}

(Note the use here of the naturd logarithm rather than the common logarithm, which contrasts with the
transformation of doses.)

Here, satigticd inferenceswill focuson W, whereas $ will be treated as a nuisance parameter. In this
context it is useful to define atype of loglikelihood that is afunction of 1 only, with $ diminated. The
profileloglikelihood functionis

| (M) = sup, [(m,b)

In words, define the profile loglikelihood function to be the function of 1 only, obtained by setting $
equa to that vaue which maximizes the 2-parameter likelihood I (1,$ ), fixing . Thisrequiresa
numerica optimization (numerica techniques are described in the next section). In practice the profile
likelihood is handled using the same procedures as the likelihood of a single-parameter modd, e.g., in
likelihood ratio tests (Barndorff-Nielsen, 1991).

Confidence intervals based on profile log-likelihood, “ basic” approach. For the likelihood-based
intervals consdered here, theinterva is the set of parameter values not rejected using a likelihood ratio

test. The procedure can be stated most Smply in the case where unique, finite maximum likelihood

estimates (MLES) exigt for both probity parameters, in the interior of the space of dlowable vaues. In

this case the gpproach isfairly straightforward.
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Let ~ bethe MLE for p and let b denotethe ML for $, whichisto say that Mand b arethe choices

of parameter vaues that maximize the likelihood function. Then the maximi zed val ue of the log-
likelihood , say |, isobtained by plugging the MLEsinto the likelihood expresson. Thus:

lap = 1(,D) = 1 (1)

(Here“sup” is short for “supremum.”) Then, for a 2-sided 95% confidence interva, the upper bound
and lower boundsfor 1, say Mand m, are obtained by solution of the following nonlinear equetions:

lp(M) = 1p(M) = Iy, - 1921, M<H<A

In genera, to compute a 100(1 - **)% confidence intervad, the bounds are defined by the equation:

1 A
Ip(m):lp(rﬁ):lsup-ch(l-a), m< < m

(Bickdl and Doksum, 2001) where ¢ (1- a ) denotes the (1-'*)th quantile of a chi-square distribution

with asingle degree of freedom. (In paticular ¢,*(0.95) = 3.84=2%1.92.) Itisuseful to define

1
Icrit = Isup ) E Cl2 (1' a )

which isthe criticd vadue of the profile loglikeihood that the bound vaues must stisfy.

Use of these expressions requires numerical searches among values of p above and bdow M. In

some cases a solution does not exig, in which case the bound may be taken to be +4. In particular
cases, graphs of the profile likelihood suggest an approach to an asymptote that fals short of the critica
value. Unless conditions can be derived and automated for identifying the gpparent infinite-bound
cases, the search must be redtricted to afinite interval. When the search isredtricted to afinite interval,
one cannot distinguish between bounds that are very wide and bounds that are actudly infinite.

Example. Thefollowing hypothetical data were generated in asmulation of the Revised UDP. The
profile loglikelihood curve for these dataiis displayed in Figure A.1
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TableA.l. Datafor Profile Loglikelihood Example

dose (mg/kg) number tested number responding
175.0 1 0
553.4 2 0
1750.0 3 1
5000.0 4 1

MLEs m=4.153, 5 = 1.020, estimated LD50=14223 mg/kg

95%CI for LD50 (1950 mg/kg,>2* 10°> mg/kg)
maximized loglikdlihood: 14,, = -4.603
aritical loglikeihood for bounds: |;=-6.524

This data set was andyzed in the following steps. The 2-parameter probit model wasfitted to the data
using a conventiond probit methods (welghted Gauss-Newton optimization). That approach is
consdered to yiedld MLEs of modd parametersin thiscase. The MLEs are displayed in table
footnotes.

Evauation of the loglikelihood a the MLEs gives|,,=-4.603 (see Figure A.1). Therefore, any bounds
must have profile loglikelihood equd to | ;.=-6.524. A line search below the MLE found the lower
bound for p of 3.29 (or LD50=1950). A search for an upper bound failed to find avaue of p with the
required profile loglikelihood within afactor of 15 of the MLE. Therefore, the upper bound would be
reported as greater than 213000 (=15* 14223). In this case, the absence of a useful upper bound
probably results from the restriction of test doses to values not exceeding 5000 units
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Figure A.1 Profile Loglikelihood Example
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Extension of the approach to cases with a single intermediate response fraction. In some cases,
the computations just described will not be applicable. However, the gpproach has been extended to

one case that is not ordinarily analyzed under a 2-parameter probit modd. Thisisthe case where there
isonly asingle test dose with an intermediate response fraction (the percentage responding is neither

0% nor 100%), and where any lower test doses are associated with 0% response, and any higher test

doses are associated with 100% response. Thisis Case 4 asdescribed in Table 1.

In the cases considered above, the loglikelihood supremum | 4, was found by evaluating the
loglikelihood at the MLES. For Case 4, it appearsthat |, has anaturd definition, athough the vaue of
|« iS Obtained as alimit and does not correspond to particular finite values of p and $.

Within the ranges dlowed for L and $, the fitted probit curve can be made to match the data as closely
aswe like by specifying $ to be sufficiently steep. Condder the family of curves that exactly match the
sngle partid response, with different dopes. Steeper dopes dlow the O's to be matched more closdy
at one end, and the 100's to be matched more closdly at the other end. This argument suggests that the
supremum of the loglikelihood can be caculated by taking appropriate limits, resulting in the expression:

ér. U én - r. U

lgp =1+ INE==0+ (N, - 1)) INg——
CIUR e N g

where| isthe index of the dose associated with a partid response fraction. This expression is obtained
from the 2-parameter log-likelihood | (l1,$) by deleting the contributions from doses other than dosej,
and for dose|j by setting the predicting response percentage equal to the observed response percentage
r; In;. For the terms other than the jth, the limit is zero as the dopeistaken to infinity. The jth observed
response fraction eguals the corresponding observed fraction because for any finite dope value, the
intercept can be adjusted o that the results for the jth dose are matched exactly.

A second requirement for implementation of a profile likeihood gpproach isto define afinite interva of
M vaues in which to search for an upper or lower bound. Where there is an unambiguous MLE, an
upper bound is searched for among vaues of p above the MLE, and alower bound is searched for
below the MLE. In the case under consideration, where there is asingle dose with partial response, we
use the dose that has partia response as abound for the search interval.

Example with one partial response dose. The following data were generated in a Ssmulation of
Revised UDP.
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TableA.2. Examplewith a Single Partial Response Dose.

dose (mg/kg) number tested number responding
175.0 2 0
553.4 3 2
1750.0 1 1

maximized loglikdihood: 1, =-1.910
critica loglikelihood for bounds. | ;;=-3.830
95%Cl 1.97 - 3.35 for Y, 93 - 2258 mg/kg for the LD50

In this example, thereis only asingle partiad response dose. The maximized loglikelihood is calculated
using the formula given. (The LD50 would be 553.4.) The graph of the praofile loglikeihood (Figure
A.2) does not suggest any problem with thisway of defining |5,,. Each point plotted corresponds to
specific finite values of the parameters, but nevertheless the proposed method for caculaing |, (which
does not correspond to any particular parameter vaues) agppears consistent with the rest of the curve.
The use of such a profile loglikelihood presents no obvious problems.
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FigureA.2. Profile Likelihood: Example with Single Partial Response.

Profile loglikelihood:
example with single partial response
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1.4  Numerical Algorithmsfor Likelihood Calculations

A number of technical decisons are required in order to implement a profile likelihood procedure. 1tis
desrablefirg of dl to have criteriafor determining if a 2-parameter maximization of the loglikelihood
can be performed. In that case, the parameter vaues that maximize the loglikelihood arethe MLES. In
any case, the computation of abound for the LD50 requires aline search of afiniteinterva. Some
procedure is needed to define the interva that will be searched for abound. The line search involves
evauation of the profile loglikdihood function | (1) for different vaues of . Each evaduation of the
profile loglikelihood involves a

1-dimensiond optimization ($ is optimized with p fixed).

Each of these procedures requires anumber of technical decisons. Most of these decisions are not
related to the fundamenta method, being more to production of areliable dgorithm. Here, a
description is provided of the implementation used. In smulations, it gopears thet this dgorithm never
aborts because of numerica overflows or divisons by zero, etc. For concreteness, the procedure is
described for computing the upper bound. The modifications needed for computation of alower bound
Seem obvious in most cases.

Computation of MLES by 2-dimensional optimization. When an optimum can be determined for the
likelihood function, the results are used in calculating bounds by the profile likelihood method. There

are many optimization techniques that can be consdered for this purpose. In probit andyss, it is
conventiona to use aweighted Gauss-Newton approach devised by R.A. Fisher. Thisagorithmis
described in Finney’s (1971) Chapter 4. The gpproach is consdered to generate maximum likelihood
edimates in probit analyss. Thisagorithm is consdered to be a perfectly good gpproach viewed from

the standpoint of modern nonlinear satisticad modeing. The dgorithm is actudly a specid case of an
gpproach widely used for generaized linear modds, abroad class of nonlinear models (M cCullagh and
Nelder, 1989). The dgorithm isclosdy related to the more familiar Newton-Raphson agorithm, but
involves a smplified expresson for the Hessian.

It is known that finite MLES do not exist in some cases. Silvapulle (1981) has presented necessary and
aufficient conditions for existence of MLESfor logit and probit models. The conditions are very
generd, addressing models with many regressors. In the case of probit analys's, the conditions
agpparently reduce to a requirement that some dose where one or more animals respond is lower than
some other dose where one or more animals do not respond. A particular case of Silvapulle's
condition is the case where there are at least two doses with partid response fractions. The latter is
sometimes used as a criterion for when probit andysis can be performed. Another case is when the
observed relation between dose and fraction responding deviates from monotonicity.

Silvapulle s criterion dlows an estimate if the probit dope equd to zero. If the dopeis zero, the same
response fraction is predicted at every dose. In that case either thereis no estimate of the LD50 or dse
every doseis estimated to bethe LD50. A great many applications of probit or logit models are not
concerned with estimation of an LD50, and Silvapulle in particular does not discuss estimation of the
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LDS0.

Currently, 2-dimensiona optimization is performed when the Silvapulle condition holds and when an
additiona criterion is met, which indicates a positive relationship between dose and observed response.
(The handling of various cases is summarized in the following section.) In addition to the Silvapulle
condition, a requirement is that the geometric mean dose is higher for animals that respond than for
animas that do not respond. This condition isindicated in Revised UDP as a requirement for
inferences regarding the L.

Specification of interval searched for a bound. A numerica search for abound for the LD50 must
be redtricted to afinite intervd, particularly in view of the possbility that abound may beinfinite. The
search interval isdefined usng two numbers, a point estimate and a multiplicative factor, say Fegyan-

For computation of the upper bound, the search intervd is

[LD50 point estimate, LD50 point estimate* F gl -
For the lower bound, the search intervd is
[LD50 point estimate / F gy, LDS0 point estimate].

With regard to notation, the usud practice of usng 1 (=log,o( LD50)) ingtead of LD50 is deviated
from. Thisisbecause, in the software, it is expected that al results will be expressed in terms of the
LD50. The variable Fg,q, Will be accessble for modification for the user.  Therefore, Fey o IS
represented as a multiplicative factor gpplied to a point estimate of the LD50.

Here, use of the term “point estimate” is possibly the source of some confusion. The LD50 value
which defines the search intervd is not the LD50 point estimate indicated in Revised UDP. Therefore,
the term “ center of search interva” may be used in the remainder of the document. To avoid having to
define addiitional symbols, M will continue to denote the center of the search interva athough, in

gdtidics, the“hat” (7) over a parameter symbol ordinarily indicates a maximum likelihood estimate,

Determining if a bound exists within the search interval (bracketing step). Theline search
agorithm has two steps, abracketing step and abisection step. The bracketing step servesto
determine whether a bound exists within the search interva. Also, the bracketing step produces
quantities useful in the bisection step, which follows.

Expressing the model in terms of 1, the search interval for an upper bound can be denoted (M, M +
[0010( Feearcn))- A bound exists within the search interval provided that
Io(M + 1000 Fearar) < it If this condition holds, then the bisection step can be used to locate the

bound value within the search interval. Otherwise, the upper confidence bound is reported only as
being greater than the bound of the search intervd, i.e., as greater than
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M +1000( Feeerar)-

This suggest that the bracketing step need only involve evauation of the profile loglikelihood at the
bounds of the search region. However, amore complex set of computationsis used: Observe that
evauaion of |, involves optimization of $. A starting estimate of $ is required for each optimization.
Therefore, it is reasonable to evauate a sequence of 1 valluesm, M+*, M+2*, ..., where * issome

congtant, sopping when the value of 1 islessthan | ;; or the bound of the search region is atained. If
this approach is used, then good starting values of $ are usudly available. The optimized vaue of $
from one evauation of |, isagood sarting vaue for use in the next optimization.

In amulations, Fe.q, = 50 isused currently, and avaue of * is used such that the bound of the search
region is attained in 40 steps.

Calculation of a bound by bisection. The use of bisection to calculate a bound for 1 requires two
values, say [, and U, that satisfy 1p(Uy) > Igp and 1p(U2)< |4, Such values are provided by the fina
two vauesof p evaluated in the bracketing step.

Gauss-Newton algorithm to optimize $ with p fixed. The profileloglikelihood function I 5(1) isa
function of i obtained from the 2-parameter loglikelihood | (1, $) by optimizing $, with 1 fixed.

The Gauss-Newton approach, conventiona for 2-dimensiond optimization in probit analys's, is easily
developed for the case of 1-dimensiona optimization of $. First, for the benefit of individuds familiar
with generdized linear models, the probit modd can be written in the following form:

M2 p(X;1,$)]= (x -n)$=xC8$.

where, as previoudy, X denotes the common logarithm of dose. From thisit is evident that the 1-
parameter model with i fixed can be treated as a generdized linear moddl with a single regressor x™
(=logy(dose)- ), with no intercept term, and with link function M * (the probit link). Asusud in probit
andlyss, binomid variation isassumed a a given dose, which resultsin afactor of p(1-p) inthe
regression weights.
The standard approach leads to the following scheme for updating the estimate of $:

[ $ a (I+D)thiteration] = [ $ at ithiteration ] + dg

where dg can be computed with the expression:
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with the quantities w;, X;, y; defined in the following steps (recal definitions given dready for
d;, r;, andn):

X; =logy(d;) - 1 = vaue of “regressor” for ith treatment levd, I=1,...,0;
Probit =x;" C$ = predicted probit vaue for ith treatment leve;
P = M( Probit; ) = predicted response fraction at ith treatment levd;
binV, =p,(1-p;)/n = hinomid variance.
f = exp( -Probit2/2)/%( 2B)
= weight contribution associated with probit dose-response
function;
W, =f, 2/ binV, = weight for ith trestment level;
P =r;/n = observed response fraction at ith treatment levd;
and
I __ 9 * obs fovg -1
gp!(mb)=a l, fo X (p™- ) binV,

the last quantity being the partid of the 2-parameter loglikelihood with respect to $.

$ isnot congtrained to be non-negative in these computations. An argument can be made for
congraining $ to be non-negative, or greater than some small positive vaue such as0.5. Adding a
congtraint of this sort does not appear to be technicaly difficult, and would probably narrow some of
the confidence intervals.

Convergence criteria. All that isneeded from the 1-dimensona optimization is a profile-loglikelihood
vaue. A relaive gradient criterion can be used. Convergence occurs when

1
o (M b/ # 0.00001.
I(m,b)

For 2-dimensiona optimization, a criterion based on relative change in parameter vauesis used
currently.

Stabilization of parameter changes. When the sarting values are too far from the optimum, the
search direction indicated by the dgorithm may be reasonable, while the magnitude of change in that
direction may be such as to miss the optimum significantly. Improvements on the basic agorithm may
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involve use of the search direction, with modification of the magnitude of change in that direction, for
example by use of having or line searching (Myers, 1990, particularly Section 9.4; Seber and Wild,
1989).

For the 1-dimensiona optimizations, the magnitude of parameter change (dg) is constrained to absolute
vaues not exceeding 0.5. dg isset to 0.5 whenever dg is greater than 0.5 and dg is set to -0.5
whenever dg islessthan -0.5. Thisfeature diminated some problems that occurred otherwise.

Computation of starting values for optimizations. Convergence is expected to be rgpid and reliable
within asufficiently smal neighborhood of the optimum. Many authors emphasize computation of

garting vaues likely to be cose to the optimum solution. In the case of probit analys's, an obvious

gpproach for computing starting valuesis by alinear regression of transformed response fraction (probit
transformation) againg log dose. The probit trandformation is not finite valued if the response fractionis

O or 1, hence asmall constant may be added or subtracted from the observed response fractions, to

obtain finite probit vaues for use in the regresson.

A garting dope vaue is not calculated from the data when fitting the probit function. Experience with
the standard Gauss-Newton agorithm used in probit andysis has shown that numerica failures may be
associated with computation of weights. Note that the weight computations involve divison by the
quantitiesp;( 1 - p; ) where p; isthe predicted response fraction at the ith treatment level based on the
current parameter values. Numericad failures are often related to vaues of one or more of the p; that
aretoo closeto O or 1, so that division by zero occurs. This outcome can be prevented by setting the
initid vaue of thedope & aand| vdue

(avaueof 0.5isused). For agarting value for the LD50, the geometric average of test doses is used.

A darting dope vaue from the datais not calculated when fitting the probit function. Insteed, for a
garting vaue for the LD50, the geometric average of test dosesis used. Starting vaues of the dope
are aso needed for the 1-dimensiond optimizations of $ (fixing ). For most of these optimizations, an
optimized vaue of $ corresponding to anearby value of L isavailable. Otherwise, avaue of 0.5 can
be used.

15 Classification of Cases

It is proposed that whether a confidence interval can be caculated, and if so the computations to be
used, will be based on the following classfication (see Table A.3).

In development of this scheme, discussions with the OECD avian stat group have been very hdpful,
athough that group has developed a somewhat different classification (report in press). For example,
the avian scheme does not explicitly use the results of Silvapulle.

The conditions for cases are checked in the order that the cases are displayed in the table, so
when the conditions for agiven case are met, none of the higher-number cases obtain. Table A.4
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indicates the computational procedures proposed for each case. Subsequent text expands upon the
suggedtions summarized in thistable.

Table A.3. Classification of Data Casesfor Purposes of Confidence Interval Calculation

Case

Description

1

(“No poditive dose-response association”). Thereis no variation in response (dl
animals tested in the study responded, or none responded), or the geometric mean dose
is lower for animas responding than for animals not responding.

(“ Standard 2-parameter probit computations’). The Silvapulle criterion holds (i.e., one
or animals responded at a dose below some other dose where one or more did not
respond. The conditions defining Case 1 do not hold.

(“No partia response fractions.”). All doses tested are associated with response
fractions of 0% or 100%, with the doses associated with 0% response lower than the
doses associated with 100% response. One or more doses is associated with 0%
response and one or more doses is associated with 100% response.

(“One partid response fraction, first subcase’). Thereisasingle dose associated with a
partid response fraction. One or more lower test doses is associated with 0%
response, and one or more higher test doses is associated with 100% response.

(“One partid response fraction, second subcase’). Thereis a sngle dose associated
with partid response, which is ether the highest test dose (with no responses at dl other
test doses) or the lowest test dose (with 100% response at al other test doses).

Acknowledgement. The development of this scheme was helped by conversations with the OECD
avian acute gtatistics group, which has developed asimilar classfication (report in press).
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Table A.4. Classification of Data Casesfor Purposes of Confidence Interval Calculation with Computational Procedures

2- Profilelikelihood procedures
' arameter
Case Description . Confidence P MLE .
interval approach log-likelihood center of search
calculated supremum region

1 No positive dose-response no confidence no not gpplicable
association interval computed

2 Standard 2-parameter probit basc profile yes equd to loglikdihood MLE for LD50
computations likelihood approach evauated a the MLEs

3 No partid response fractionsand | lower bound is no not gpplicable
not Case 1. highest with 0%

response, etc.

4 One partid response fraction, profile loglikdihood Dose associated
0% response at some lower extended by specia no expression in footnote! | with partia
doses and 100% at some higher | computations response
doses

5 One partid response fraction, a | profile loglikeihood Dose associated
either high test dose or low test extended by specid no expresson in footnote! | with partia
dose computations response

! Suppose the jth dose is associated with a partid response. Then the loglikelinood supremum is

érj U én. -

7

enig g N

r u
=r, - IR0+ (n, - 1) INE——0
i O

where n; and r; denote the number of animals treated and the number that respond at the jth treatment level (see Section 1).




The decigonsindicated in the table are as follows:

Case 1. With the stopping rulesindicated for Revised UDP, this case appears to be possible only if
testing is stopped at alimit dose (based on non-response for three animals tested in sequence at the
dose). No methods are proposed here for cases where there is not an observable relationship between
dose and response. In some cases, a binomid test may be used to establish that the LD50 is above or
below the range of doses tested, but a significant binomia test requires testing of 5 or more animals and
would use only the data from one test dose. Some procedures that may be applicable in this case have
been developed for avian acute testing (report in press).

Case 2. Where the datadlow, both probit parameters are estimated usng maximum likelihood. The
loglikelihood supremum is the vaue of the 2-parameter loglikelihood, evaluated at the MLES.

Thisloglikelihood supremum is used to caculate a critica loglikelihood, which the bound values must
satidfy. A search abovethe LD50 MLE is used to caculate an upper bound and a search below the
LD50 MLE isused to caculate alower bound.

Case 3. When there are no partia response fractions (along with other requirements of the case, as
indicated in Table A.4) the profile loglikelihood approach apparently cannot be used. Inthiscase, it
seems that any dose within the interval bounded by the highest dose with no response, and the lowest
dose with 100% response, would be equdly vdid as an estimate of the LD50. Simulations suggest that
these two doses will perform acceptably when used as confidence bounds. Graphs of the profile
loglikelihood indicate discontinuities at those doses, so that the profile loglikelihood gpproach cannot be
implemented in a Sraightforward manner.

Case 4. When thereisasngle partid response (dong with other requirements for the case, as
indicated), the profile loglikelihood can be applied using specid computations as described in Section 1.
It is proposed that, when searching numerically for abound, the dose with partia response can be used
to define the search interval.

Case 5. Thisisan infrequent case which occurs mainly if the LD50 is close to a bound.
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Appendix B

Tables of Smulation Results
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TableB.1.

Per centages of Cases 1-5 among Smulated Studies
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Scenario#  LDS0 dope initialtet % Casel % Case2 % Case3 % Case4
dose  +Caseb
37 4 175 21.0 25. 4 30.0 23.5
38 2 175 14.7 52. 4 11.3 21.6
39 0.8 175 11.2 62.9 6. 4 19.5
40 0.5 175 11.2 60. 1 5.2 23.5
41 3500 8. 33 175 27. 4 1.0 70.5 1.1
42 4 175 36.1 24.9 28.0 11.1
43 2 175 22. 4 50.9 9.5 17.2
44 0.8 175 12.1 62. 6 6.4 18.9
45 0.5 175 11.0 60.0 6.8 22.3
(ii) Scenarioswith initial test dose varied
46 1.5 8. 33 1.1 0.0 2.1 66. 0 31.9
47 1.5 1.2 9.2 22. 0 67.6
48 1.9 8.0 9.3 43.1 39.6
49 4 1.5 4.2 27.6 16.1 52.1
50 2.4 18.6 27. 8 23.9 29. 7
51 2 1.5 9.1 40. 6 12. 3 38.0
52 4 30.9 39.0 14. 1 16.0
53 0.8 1.5 15.5 52.5 6.2 25.9
54 16.9 19.5 58.7 6.5 15. 2
55 0.5 1.5 19.3 50.0 6.7 24.0
56 72.3 8.2 67. 4 5.8 18. 6
57 2.5 8.33 1.8 0.0 0.1 67.6 32.3
58 2.5 0.0 0.0 26. 1 73.9
59 3.1 0.0 0.0 50.1 49.9
60 4 1.2 0.0 10.1 33.4 56.5
61 2.5 0.7 8.2 22. 6 68. 4
62 4.1 6.5 8.9 43. 3 41. 3
63 2 2.5 3.1 38.4 14.1 44.5
64 6.6 1.5 40.0 13.6 44.9
65 0.8 2.5 11.8 53.3 7.0 28.0
66 28. 2 6.8 60. 4 7.5 25.3
67 0.5 2.5 14.0 54.3 6.4 25. 4
68 120.5 7.1 67.3 5.9 19.6
69 20 8.33 14 0.0 0.2 74. 1 25.7
70 20 0.0 0.0 25.7 74.3
71 25. 2 0.0 0.0 50.0 50.0
72 4 9.6 0.0 9.5 34.0 56.5
73 20 0.0 5.0 21. 7 73.3
74 32.5 0.0 10. 8 34.3 54.9
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Scenario#  LDS0 dope initialtet % Casel % Case2 % Case3 % Case4
dose +Caseb

75 2 4.6 0.0 41.1 14.6 44, 3
76 20 0.0 28.1 16. 6 55.3
77 52.7 0.0 32.3 14. 3 53. 4
78 0.8 20 0.1 51.2 8.9 39.8
79 225. 4 0.1 62. 4 7.8 29.7
80 0.5 20 0.9 59.5 8.2 31. 4
81 964. 4 1.5 71.6 6.3 20. 6
82 50 8.33 35.1 0.0 0.0 73.9 26.1
83 50 0.0 0.0 22. 6 77. 4
84 63. 1 0.0 0.0 50. 8 49. 2
85 4 23.9 0.0 9.2 36.1 54.7
86 50 0.0 3.3 20.9 75.8
87 81.2 0.0 8.8 34.8 56. 4
88 2 11.4 0.0 35.6 15.0 49. 4
89 50 0.0 27. 4 14. 2 58.4
90 131.8 0.0 32.1 13.5 54. 4
91 0.8 1.3 0.0 68. 1 7.6 24. 3
92 50 0.0 51.8 8.0 40. 2
93 563. 6 0.0 58.7 8.6 32.7
94 0.5 50 0.8 57. 4 8.2 33.5
95 2411.1 1.5 69. 6 7.2 21.8
96 150 8.33 105.3 0.0 0.0 71.8 28. 2
97 150 0.0 0.0 24. 6 75. 4
98 189. 3 0.0 0.0 50.0 50.0
99 4 71.7 0.0 9.5 33.0 57.5
100 150 0.0 4.9 21. 4 73.7
101 243.5 0.0 9.3 34.7 56.0
102 2 34.3 0.0 36.0 14.5 49.5
103 150 0.0 26. 7 16. 8 56.5
104 395. 3 0.0 32.0 13.6 54. 4
105 0.8 3.8 0.2 70.0 5.4 24.5
106 150 0.0 51.5 9.1 39.4
107 1690. 9 0.3 62.0 8.0 29.7
108 0.5 150 0.7 55.7 8.2 35.4
109 600 8. 33 421 0.0 0.1 72.7 27. 2
110 600 0.0 0.0 26.9 73.1
111 757. 2 0.0 0.1 51. 4 48. 5
112 4 286.9 0.0 11.4 33.7 54.9
113 600 0.0 4.3 25. 3 70. 4
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Scenario#  LDS0 dope initialtet % Casel % Case2 % Case3 % Case4
dose +Caseb

114 974 0.0 13.2 35.8 51.0
115 2 137.2 0.0 36. 8 14. 8 48. 4
116 600 0.1 26. 7 16. 3 56.9
117 1581. 1 0.4 31.8 14.1 53.7
118 0.8 15 0.1 69. 6 7.1 23.2
119 600 1.2 52.9 8.4 37.5
120 0.5 1.6 1.5 75.5 5.1 17.9
121 600 3.0 59. 6 6.4 31.0
122 1500 8.33 1052.5 0.0 0.0 72.9 27.1
123 1500 0.0 0.0 23. 4 76. 6
124 1892. 9 0.0 0.0 52.4 47. 6
125 4 717.3 0.0 7.5 34.2 58. 3
126 1500 0.2 5.1 23.6 71.2
127 2435 0.0 9.4 34.6 56.0
128 2 343 3.8 39.8 17.2 39.2
129 1500 3.0 30. 3 14. 2 52.6
130 3952. 8 0.5 37.2 13.9 48. 4
131 0.8 37.5 4.7 69.0 6.2 20.1
132 1500 11.0 51.8 7.4 29.8
133 0.5 4.1 5.2 74.6 5.2 15.0
134 1500 15.1 52. 4 6.6 25.9
135 3000 8.33 2105.1 5.4 2.9 66. 4 25.3
136 3000 0.8 4.9 23.2 71.1
137 3785. 8 0.2 1.5 52.7 45. 6
138 4 1434.6 27.3 14.9 39.7 18.1
139 3000 3.0 24.8 20.1 52.1
140 4750 0.7 17.7 35.1 46. 6
141 2 686 11.5 46. 3 11.9 30.3
142 3000 8.5 40.5 11.8 39. 2
143 0.8 75 7.9 67.5 5.4 19. 2
144 3000 14.0 52.7 4.8 28.5
145 0.5 8.2 5.5 76. 4 4.5 13.6
146 3000 18. 2 52.9 6.9 22.0
147 3500 8.33 2455.9 17.8 6.6 53.3 22.3
148 3500 1.9 13. 4 19.8 64.9
149 4416. 8 0.0 4.8 50.5 44. 7
150 4 1673.7 37.8 18.0 28. 3 15.9
151 3500 4.7 30.4 16.0 48. 9
152 2 800.4 13.9 50.0 9.0 27.1
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Scenario#  LDS0 dope initialtet % Casel % Case2 % Case3 % Case4
dose  +Caseb

153 3500 8.1 43. 4 11. 2 37.3
154 0.8 87.5 9.2 66. 8 6.0 18.0
155 3500 15.5 52.4 5.8 26. 2
156 0.5 9.6 13.3 69. 3 5.1 12. 3
157 3500 18.1 54.2 5.2 22. 4
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TableB.2.

Performance M easures PM 1-PM 4 (defined in Section 2.5).

Scenario LD50 slope initial PML(% PM(% PM3 PMA( %
# t est
dose
(T) Scenarios With initial test dose of 175 units

1 1.5 8. 33 175 100.0 100.0 5.5 302
2 4 175 98.4 99.6 5.5 302
3 2 175 76. 4 93.8 10.5 449
4 0.8 175 53.8 87.2 >1000 3033
5 0.5 175 45. 2 79.6 >1000 >100000
6 2.5 8. 33 175 100.0 100.0 5.5 181
7 4 175 99.6 99.9 5.5 181
8 2 175 89.7 96.5 7.0 275
9 0.8 175 58. 2 88.1 >1000 2167
10 0.5 175 46. 6 80.9 >1000 >100000
11 20 8. 33 175 100.0 96.0 4.2 178
12 4 175 99.1 92.7 4.2 178
13 2 175 88.2 89.0 8.8 213
14 0.8 175 58.0 77.4 260.5 3425
15 0.5 175 52.5 73.2 >1000 5029
16 50 8. 33 175 100.0 95.3 4.0 118
17 4 175 97.0 90.7 4.4 185
18 2 175 75. 2 88. 8 11.1 269
19 0.8 175 56. 8 85.6 89. 4 2012
20 0.5 175 52.2 81.8 >1000 4332
21 150 8. 33 175 100.0 97. 8 24.5 457
22 4 175 95.9 93.9 24.5 457
23 2 175 74. 1 88.7 24. 5 457
24 0.8 175 56. 3 80. 6 24.5 1250
25 0.5 175 50.0 79.1 >1000 >100000
26 600 8. 33 175 100.0 93.8 4.0 191
27 4 175 96.9 89. 2 4.2 191
28 2 175 77.8 89.0 10.5 224
29 0.8 175 55.3 84.0 63. 3 4092
30 0.5 175 48. 2 81.0 >1000 >100000
31 1500 8. 33 175 100.0 97.1 4.1 135
32 4 175 98.8 93.0 4.1 214
33 2 175 82.6 89.0 10. 3 247
34 0.8 175 51.7 79.8 >1000 >100000
35 0.5 175 44. 7 76.9 >1000 >100000
36 3000 8. 33 175 99.8 100.0 2.9 108
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Scenario LD50 slope initial PML(% PM(% PM3 PMA( %
# t est
dose
37 4 175 93.4 98. 4 3.6 108
38 2 175 73.0 93.9 14. 2 574
39 0.8 175 46. 6 81.2 >1000 >100000
40 0.5 175 43.9 75.3 >1000 >100000
41 3500 8. 33 175 99.7 100.0 2.9 93
42 4 175 90. 2 99.5 3.6 93
43 2 175 64.0 94.6 108.9 1296
44 0.8 175 48.0 83.0 >1000 >100000
45 0.5 175 45. 3 75.5 >1000 >100000
(if) Scenarioswith initial test dose varied
46 1.5 8. 33 1.1 97.9 99.9 3.2 159
47 1.5 91.9 100.0 5.7 216
48 1.9 93.3 98. 8 9.2 332
49 4 1.5 73.0 99.1 12. 4 441
50 2.4 74.5 98.7 14. 4 510
51 2 1.5 57.2 94. 1 12. 4 441
52 4 59.6 97.1 16.5 702
53 0.8 1.5 42. 8 90.8 >1000 >100000
54 16.9 40.5 81.6 >1000 >100000
55 0.5 1.5 43.7 86.2 >1000 >100000
56 72.3 46. 9 74.7 >1000 >100000
57 2.5 8. 33 1.8 99.9 99.9 3.2 156
58 2.5 100.0 100.0 15.6 329
59 3.1 100.0 99. 2 3.2 268
60 4 1.2 90.0 97.3 4.4 192
61 2.5 92.2 99. 4 15.6 329
62 4.1 94.0 99.6 5.8 224
63 2 2.5 63.4 96. 3 19.9 532
64 6.6 63. 6 94. 4 24. 5 1033
65 0.8 2.5 44. 4 88.3 >1000 >100000
66 28. 2 52.6 79.5 >1000 4415
67 0.5 2.5 42.5 87.0 >1000 >100000
68 120.5 46. 8 77.4 >1000 >100000
69 20 8. 33 14 99.8 100.0 3.2 151
70 20 100.0 100.0 24. 5 391
71 25.2 100.0 99. 3 3.2 272
72 4 9.6 90.9 97.7 4.4 213
73 20 95.0 98.9 24.5 391
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Scenario LD50 slope initial PML(% PM(% PM3 PMA( %
# t est
dose
74 32.5 89. 2 99.0 24.5 295
75 2 4.6 80.7 87.7 10.8 317
76 20 72.6 93.7 24.5 575
77 52.7 74. 4 90. 6 24. 5 479
78 0.8 20 52.7 85. 2 63. 2 2288
79 225. 4 63. 6 76. 6 70. 2 1125
80 0.5 20 47.0 80.8 >1000 >100000
81 964. 4 56. 7 77.3 >1000 4874
82 50 8.33 35.1 100.0 99.9 3.2 152
83 50 100.0 100.0 24.5 391
84 63.1 100.0 99.1 3.2 86
85 4 23.9 91.5 96. 8 4.4 183
86 50 96. 7 99.1 24.5 391
87 81.2 91.2 98.7 24.5 295
88 2 11. 4 81.5 89.1 10.9 282
89 50 72.7 91.0 24.5 575
90 131. 8 74.0 90. 7 24.5 479
91 0.8 1.3 72.8 77.0 81.4 2301
92 50 54. 4 84.0 63. 3 1238
93 563. 6 66. 9 73.9 33.2 973
94 0.5 50 48. 7 79.3 >1000 >100000
95 2411.1 58.9 75.8 >1000 4121
96 150 8.33 105.3 100.0 99.9 3.2 152
97 150 100.0 100.0 24.5 391
98 189.3 100.0 99.7 3.2 273
99 4 71.7 90. 7 97.1 4.4 251
100 150 95.1 98.9 24. 5 391
101 243.5 90. 8 98.9 24.5 295
102 2 34.3 83.0 91. 4 8.8 272
103 150 73.5 92.0 24. 5 575
104 395.3 72.2 90. 7 24.5 479
105 0.8 3.8 70.0 78.6 120.2 3826
106 150 53.3 84.0 64.5 1238
107 1690. 9 62.7 76. 3 75. 8 1139
108 0.5 150 50.5 80.0 >1000 25569
109 600 8. 33 421 100.0 99.9 3.2 152
110 600 100.0 100.0 24.5 391
111 757. 2 99.9 99. 3 3.2 86
112 4 286.9 92.5 97.0 4.9 207
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Scenario LD50 slope initial PML(% PM(% PM3 PMA( %
# t est
dose
113 600 95.7 98. 7 24.5 391
114 974 90.7 99.2 4.8 219
115 2 137.2 80. 8 91.1 9.1 281
116 600 73.3 92.6 24. 5 575
117 1581.1 74.9 91.7 24.5 266
118 0.8 15 65.1 81.2 183.2 3419
119 600 50. 8 84.4 >1000 1509
120 0.5 1.6 62. 2 78.7 >1000 >100000
121 600 45.5 82.5 >1000 >100000
122 1500 8.33 1052.5 100.0 100.0 4.8 263
123 1500 100.0 100.0 25. 6 405
124 1892.9 100.0 99.3 3.2 86
125 4 717.3 92.6 98.1 4.0 166
126 1500 95.0 99.6 25. 6 405
127 2435 90.6 98.9 10. 7 295
128 2 343 74.6 94.0 6.7 261
129 1500 72.7 96. 1 27.0 617
130 3952. 8 69. 2 87.7 10.5 358
131 0.8 37.5 59.3 84.0 >1000 63283
132 1500 46.0 90.8 >1000 >100000
133 0.5 4.1 51.7 78.5 >1000 >100000
134 1500 45. 4 87.3 >1000 >100000
135 3000 8.33 2105.1 98.4 99.9 2.4 96
136 3000 95.6 100.0 7.1 225
137 3785. 8 98.7 99.1 3.2 86
138 4 1434.6 89.3 99.9 3.5 119
139 3000 77.0 99. 3 13.7 256
140 4750 82.8 99.1 4.4 137
141 2 686 58. 6 93.2 24. 5 231
142 3000 57.2 95.0 13.7 256
143 0.8 75 51.8 82.9 >1000 >100000
144 3000 42.2 90.1 >1000 >100000
145 0.5 8.2 52.3 79.9 >1000 >100000
146 3000 42.1 85.7 >1000 >100000
147 3500 8.33 2455.9 94. 7 99. 3 2.0 73
148 3500 87.4 100.0 5.2 172
149 4416. 8 95.3 99.4 3.2 86
150 4 1673.7 83.4 99.9 9.8 254
151 3500 69. 7 99.4 11.8 229
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Scenario LD50 slope initial PML(% PM(% PM3 PMA( %

# t est

dose
152 2 800. 4 53.7 94.6 864.9 23232
153 3500 54.5 96. 1 24.5 229
154 0.8 87.5 56. 3 80.4 >1000 >100000
155 3500 40. 8 89.8 >1000 >100000
156 0.5 9.6 46. 6 81.1 >1000 >100000
157 3500 39.7 86.6 >1000 >100000
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