
Reproducing the ITS-2 model using R

Jason R Pirone1, Marjolein Smith1, Nicole Kleinstreuer2, Thomas

Burns2, Judy Strickland2, Yuri Dancik4, Richard Morris1, Lori

Rinckel2, Warren Casey3, and Joanna Jaworska4

1Social & Scientific Systems, Inc., Durham, NC 27713, USA

2Integrated Laboratory Systems, Inc., Research Triangle Park, NC

27709, USA

3National Toxicology Program Interagency Center for the

Evaluation of Alternative Toxicological Methods, Division of the

National Toxicology Program, National Institute of Environmental

Health Sciences, Research Triangle Park, NC 27709, USA

4Procter & Gamble NV, Strombeek - Bever, Belgium

March 31, 2014

Contents

1	 Preliminaries 3

1.1 Required software . 3

1.2 Sweave background . 3

2	 Overview of the approach 3

3	 Demonstration of the equivalence of R using the discretization

and latent variable values found using the commercial software

package 5

3.1 Load necessary packages . 5

3.2 Load the training and test data 6

3.3 Define the directed acyclic graph (DAG) 7

3.4 Discretize the training data . 7

3.5 Extract conditional probability tables (CPTs) 9

3.6 Predict LLNA class for the training dataset 9

3.7 Predict LLNA class for the test data set 11

4	 Evaluation of latent variable learning using the poLCA package 11

5	 Discretization and evaluation of latent variables using available

R packages 14

5.1 CAIM discretization of the training data 14

5.2 Create the latent variables . 15

5.3 Build the Bayesian network . 15

5.4 Predictions for the training dataset 15

5.5 Discretization and predictions for the test dataset 16

6 Discussion

7 Appendix
7.1 SessionInfo
 . 18

Bibliography

17

18

19

1 Preliminaries

1.1 Required software

R is available for download from the Comprehensive R Archive Network (CRAN).

The installation process is simple and well-documented on the CRAN website.

Once R is installed, the packages gRbase, gRain, poLCA, and discretization,

as well as any dependencies should be installed from within R using the install.packages

function. The packages graph, RBGL, and Rgraphviz are also necessary and may

not be available from CRAN; these packages are available from the Bioconductor

site and are installed by running the following commands within R:

> source("http://bioconductor.org/biocLite.R")
> biocLite(c("graph","RBGL","Rgraphviz"))

See Section 7.1 of this document for the hardware configuration and software
versions used in conducting this work. The procedure will be similar for most
operating systems and versions of R.

1.2 Sweave background

Sweave [8] is an R function that combines analysis code and formatted text
into a single report. This level of integration ensures that all results, including
figures and tables, can be easily reproduced. There is a growing consensus that
emphasizes practices enabling published research in general to be reproduced
by others ([2], [6], [10], [11]).

To regenerate this report, install an appropriate LATEX implementation (e.g.,
Microsoft Windows users should install MiKTeX). The Sweave homepage con­
tains detailed instructions on how to write and compile Sweave documents. An
integrated development environment (IDE) like RStudio or Emacs+ESS+AUCTeX
will simplify report generation.

A separate file, ITS2_R_version.R, that contains only the R code is provided
for users that do not want to use Sweave.

2 Overview of the approach

The integrated test strategy model (ITS-2) described in [4] uses a Bayesian
network to describe the relationships between in silico, in vitro, and in vivo
information relevant to skin sensitization. Using a Bayesian network as part
of an integrated testing strategy provides a probabilistic framework that goes
beyond simple classification and facilitates complex reasoning about the skin
sensitization hazard or potency of a chemical given the available evidence. A
Bayesian network has a qualitative and a quantitative component. The qualita­
tive part consists of a directed acyclic graph (DAG) where each node represents
an assay outcome and each edge (or arrow) indicates that there is a relationship
(potentially causal) between the variables it connects (see Figure 2). The quan­
titative component consists of a set of conditional probability tables that give

3

http://www.r-project.org
http://cran.us.r-project.org/
http://www.bioconductor.org/
http://www.miktex.org
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.rstudio.com/
http://www.gnu.org/software/emacs/
http://ess.r-project.org/
http://www.gnu.org/software/auctex/

the probability that an assay outcome has a particular value given the values
taken by its parent1 nodes.

The original Bayesian network ITS developed by Jaworska et al. (2011; 2013)
was developed using a used commercial software package. The use of commer­
cial software is convenient in corporate settings where the model is developed
primarily for internal use, but this practice can limit use of the model by the
larger scientific and regulatory communities. An implementation using a freely
available, open-source software would raise awareness of the approach by mak­
ing it easier to test, verify, and build upon the analysis framework. We have
developed an open-source ITS (OS ITS-2) using tools in the R software package
to build and perform exact inference using a Bayesian network.

Figure 1 gives an overview of the process used to build the ITS-2 model.
The primary computational steps are:

1. Find cut-points for each assay using a supervised discretization algorithm
on the training data. Use cut-points to discretize the training and test
datasets.

2. Cluster the assays related to bioavailability (logKow, Cfree, and AUC120)
and cysteine reactivity to construct the Bioavailability (BA) and Cysteine
latent variables respectively.

3. Compile the observed and latent variables, the DAG defining the relation­
ships among the variables, and the conditional probability tables for each
node into a Bayesian network. The compiled Bayesian network is used to
make LLNA potency class predictions on the test data.

We do not have access to the exact algorithms used by the commercial soft­
ware for variable discretization, latent variable learning, and Bayesian networks
inference. However, we do have access to the output from the commercial soft­
ware at each of the steps described in Figure 1. The output of step 1 is a
transformed dataset where the continuous assay values are converted to dis­
crete values. In step 2, the dataset created in step 1 is augmented to include
the Bioavailability and Cysteine latent variables. Finally, the transformed
and augmented dataset is used to build the Bayesian network in step 3. In the
following sections, we use the datasets produced by the commercial software
package as inputs to the R model. For example, we examine the similarity of
the R algorithms for Bayesian network inference by using the dataset produced
by the commercial software at steps 1 and 2 using as an input. Similarly, to
compare the latent variable learning algorithm in R with that of the commer­
cial software package, we use the dataset produced by the commercial software
package at step 1 as an input.

1The parents of a node are all nodes with a directed edge (arrow) pointing into that node.

4

TrainingM
data

Testing
data

DiscretizeM
variables

DiscretizeM
withMtrainingM

cut-points

LearnMBAMandM
CysteineMlatentM

variables

CompileM
Bayesian
network

PredictiveM
Bayesian
network

ModelMTraining

ModelMTesting

LLNAM
potencyM
categoryM

prediction

1 2 3

Figure 1: Diagram showing the key computational steps of the ITS-2 modeling
process.

3 Demonstration of the equivalence of R using
the discretization and latent variable values
found using the commercial software package

3.1 Load necessary packages

The following R packages are sufficient for performing an analysis similar to
that described in the ITS-2 manuscript [4]. Other R packages available from
CRAN might have similar functionality.

•	 gRbase [1] and gRain [3] supply the tools for constructing, parameterizing,
and performing inference on graphical independence networks.

•	 discretization [5] contains implementations of several algorithms for
supervised and unsupervised discretization.

•	 poLCA [9] is used for learning the latent variables.

The path referred to by projectDirectory must be changed to reflect the
location of the files downloaded from the http://ntp.niehs.nih.gov/go/its. To
regenerate this report in its entirety, all of the following files must be in the
directory pointed to by projectDirectory

1.	 ITS2_Lipid_Train_102313.txt

2.	 ITS2_Lipid_Test_102313.txt

3.	 ITS2_Supplemental_R_Functions.R

5

http://cran.us.r-project.org/
http://ntp.niehs.nih.gov/pubhealth/evalatm/integrated-testing-strategies/index.html

4. ITS2_R_version.Rnw

5. ITS2_Refs.bib

6. ITS2_Process_Diagram.pdf

7. Sweave.sty

If only the R code is of interest, the directory needs to contain only items 1–4.

> projectDirectory <- "c:/Local_Modeling/AltexSubmission"

Load the required packages and source the supplemental R functions.

> library(gRain)

> library(poLCA)

> library(discretization)

> library(xtable)

> source(file.path(projectDirectory,"ITS2_Supplemental_R_Functions.R"))

Note that gRbase is loaded automatically with gRain. The xtable pack­
age is not necessary for the analysis, but is used to format some of the tables
included in this document. Additional small functions necessary for the analy­
sis are included in the file ITS2_Supplemental_R_Functions.R. The following
sections provide step-by-step instructions on conducting an analysis similar to
that described in the ITS-2 manuscript [4], but using the ITS-2 lipid data set.

3.2 Load the training and test data

> trainData <- read.delim(file.path(projectDirectory,"ITS2_Lipid_Train_102313.txt"),
row.names=1)

> names(trainData)

[1] "LLNA" "KEC1.5" "KEC3"
[4] "IC50" "CD86" "DPRACys"
[7] "DPRALys" "logKow" "Cfree"
[10] "AUC120" "TIMES" "Cysteine"
[13] "Bioavailability" "LLNA.1" "LLNA.2"
[16] "LLNA.3" "LLNA.4" "LLNA.Expected.Value"

The training dataset contains 124 chemicals and 18 variables. The variables
LLNA, KEC1.5, KEC3, IC50, CD86, DPRACys, DPRALys, logKow, Cfree, AUC120,
and TIMES are described in the ITS-2 manuscript [4]. Cysteine and Bioavailability
are the values of the latent variables learned using the commercial software pack­
age; the probability that a chemical is in each LLNA class given the evidence is
given by the variables LLNA.1, LLNA.2, LLNA.3, and LLNA.4. The most likely
LLNA class is given by LLNA.Expected.Value.

6

> testData <- read.delim(file.path(projectDirectory,"ITS2_Lipid_Test_102313.txt"),
row.names=1)

The test dataset contains 21 chemicals and 24 variables. For the test chem­
icals, the Bayesian network was used to make predictions for Bioavailability
and Cysteine as well as for LLNA, so conditional probability distributions and
most probable classes for these variables are included.

3.3 Define the directed acyclic graph (DAG)

Figure 2 depicts the DAG shown in Figure 2 of the ITS-2 manuscript [4].

> its2Dag <- dag(~KEC1.5:IC50:Cysteine +

KEC3:IC50:Cysteine +

TIMES:Cysteine:LLNA +

DPRACys:Cysteine +

CD86:Cysteine:LLNA +

DPRALys:LLNA +

Cysteine:LLNA +

Bioavailability:LLNA +

logKow:Bioavailability +

AUC120:Bioavailability +

Cfree:Bioavailability)

3.4 Discretize the training data

The continuous variables are discretized using the cut-points determined using
the discretization procedures in the commercial software package. These values
were determined from the ITS-2 lipid dataset, so they are slightly different from
the values listed in the supplemental material for the ITS-2 manuscript [4].

> its2DiscList <- list(Cfree=c(-Inf,0.021,0.068,0.199,Inf),

CD86=c(-Inf,27.15,295.8,1025,Inf),

logKow=c(-Inf,0.094,1.919,3.834,Inf),

AUC120=c(-Inf,1.569,9.101,25.,Inf),

DPRACys=c(-Inf,15,70.45,90,Inf),

DPRALys=c(-Inf,70,95.35,Inf),

KEC3=c(-Inf,34.115,476.19,945.028,Inf),

KEC1.5=c(-Inf,10.085,238.765,1098.969,Inf),

IC50=c(-Inf,159.26,763.68,Inf))

> discIts2TrainData <- trainData[,-grep("^LLNA.",colnames(trainData))]

> discIts2TrainData <- cutData(discIts2TrainData,its2DiscList)

7

KEC1.5

IC50

Cysteine

KEC3

TIMES

LLNA

DPRACys

CD86

DPRALys

Bioavailability

logKow

AUC120

Cfree

Figure 2: Simple plot of the ITS-2 DAG.

8

3.5 Extract conditional probability tables (CPTs)

The commercial software package and gRain have slightly different methods
to handle unobserved combinations of states in CPTs. In gRain, smoothing
is done by adding a small user-defined number to each cell in a table of oc­

1 currences. In the commercial package, , where nk is the number of pos­nk

sible states in the CPT, is added to each cell. The smoothing method used
by the commercial package can be implemented by making slight modifica­
tions to the extractCPT function (see the extractCPT.Commercial function in
the ITS2_Supplemental_R_Functions.R file), or by manually constructing the
CPTs using the xtabs and parray functions.

> its2Cpt <- extractCPT.Commercial(discIts2TrainData,its2Dag)
> its2Gin <- grain(compileCPT(its2Cpt))

3.6 Predict LLNA class for the training dataset

gRain contains a simple prediction method. Setting type = class returns the
most probable class, while setting type = distribution returns the conditional
distribution.

> trainPredClass <- predict.grain(its2Gin,"LLNA",
type="class",
newdata=discIts2TrainData)

> trainPredDist <- predict.grain(its2Gin,"LLNA",
type="distribution",
newdata=discIts2TrainData)

> trainPredTable <- table(as.numeric(trainPredClass$pred$LLNA),
discIts2TrainData$LLNA,
dnn=c("predicted","observed"))

1 2 3 4
1 29 1 1 1
2 3 21 2 0
3 3 4 24 4
4 1 2 8 20

Table 1: Confusion matrix for LLNA class predictions on training data. Rows
are instances in the predicted class and columns are instances in the observed
class. (n = 124).

The structure of the confusion matrix in Table 1 is the same as in the ITS-2
manuscript [4]. Furthermore, the conditional distributions for LLNA predicted
by gRain and the commercial package are exactly the same. Table 2 shows the
gRain results and Table 3 shows the commercial package results for 10 randomly

9

selected chemicals. These identical results are expected, since both software
packages carry out exact inference on the Bayesian network using variants of
the junction tree algorithm.

> select10Train <- sample(nrow(discIts2TrainData),10)

> gRain10 <- cbind(rownames(discIts2TrainData)[select10Train],

format(trainPredDist$pred$LLNA[select10Train,],

digits = 2, scientific = FALSE))

> colnames(gRain10) <- c("CASRN",paste0("LLNA.", 1:4))

> commercial10 <- format(as.matrix(trainData[select10Train,

grep("LLNA\\.[0-9]",colnames(trainData))]),
digits = 2, scientific = FALSE)

> commercial10 <- cbind(rownames(commercial10), commercial10)

> colnames(commercial10) <- c("CASRN",paste0("LLNA.", 1:4))

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4
100-06-1 0.971694 0.027977 0.000272 0.000056
122-57-6 0.001713 0.000808 0.793932 0.203547
637-07-0 0.954734 0.021989 0.000309 0.022968
107-75-5 0.000160 0.947495 0.052049 0.000296
3055-86-5 0.906084 0.062214 0.002272 0.029430
121-79-9 0.000443 0.000907 0.776881 0.221769
874-23-7 0.413555 0.086810 0.499461 0.000175
2634-33-5 0.000206 0.000509 0.790698 0.208588
87-86-5 0.057037 0.116919 0.333108 0.492937
119-84-6 0.046210 0.001197 0.207419 0.745174

Table 2: Predicted class by gRain.

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4
100-06-1 0.971694 0.027977 0.000272 0.000056
122-57-6 0.001713 0.000808 0.793932 0.203547
637-07-0 0.954734 0.021989 0.000309 0.022968
107-75-5 0.000160 0.947495 0.052049 0.000296
3055-86-5 0.906084 0.062214 0.002272 0.029430
121-79-9 0.000443 0.000907 0.776881 0.221769
874-23-7 0.413555 0.086810 0.499461 0.000175
2634-33-5 0.000206 0.000509 0.790698 0.208588
87-86-5 0.057037 0.116919 0.333108 0.492937
119-84-6 0.046210 0.001197 0.207419 0.745174

Table 3: Predicted class by commercial software package.

10

3.7 Predict LLNA class for the test data set

The test data is discretized in the exactly the same way as the training data.

> discIts2TestData <- testData[,-grep("^LLNA.|^Bioavailability.|^Cysteine.",
colnames(testData))]

> discIts2TestData <- cutData(discIts2TestData,its2DiscList)

In the ITS-2 manuscript [4], a uniform distribution on LLNA was applied
before making predictions on the test data. This is done in gRain by modifying
and recompiling the its2Gin object.

> unifLlnaCpt <- its2Gin$cptlist
> unifLlnaCpt$LLNA <- parray(c("LLNA"),

list(as.character(1:4)),

values=rep(.25,4))

> its2UnifGin <- grain(compileCPT(unifLlnaCpt))
> testPredDist <- predict.grain(its2UnifGin,

c("LLNA","Bioavailability","Cysteine"),
type="distribution",
newdata=discIts2TestData)

> testPredClass <- predict.grain(its2UnifGin,
c("LLNA","Bioavailability","Cysteine"),
type="class",
newdata=discIts2TestData)

> testPredTable <- table(as.numeric(testPredClass$pred$LLNA),

testData$LLNA,

dnn=c("predicted","observed"))

The gRain predictions on the test set chemicals are identical to those of the
commercial package. The Bioavailability and Cysteine predictions are also
identical. The conditional distributions for LLNA are shown in Table 4 (gRain
predictions) and Table 5 (commercial software predictions). For the sake of
brevity, results are shown for the first 10 chemicals only. The structure of the
confusion matrix in Table 6 is the same as that determined using the commercial
software package.

4	 Evaluation of latent variable learning using
the poLCA package

The the R package poLCA is used to learn the latent variables. The exact al­
gorithm used by the commercial software to learn the latent variable is not
known. However, we can compare the methods if the datset discretized by the
commercial software package is used as the input to poLCA.

The number of states for the Bioavailability and Cysteine latent vari­
ables was set to 3. The number of states can be optimized by running the

11

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4
5910-85-0 0.000503 0.001592 0.740604 0.257301
3326-32-7 0.002029 0.010125 0.188737 0.799109
2785-87-7 0.072281 0.003438 0.391915 0.532366
108-90-7 0.939476 0.027764 0.000313 0.032447
67-63-0 0.977885 0.016434 0.000304 0.005376
50-21-5 0.977870 0.016438 0.000304 0.005388
119-36-8 0.976166 0.000455 0.000205 0.023174
69-72-7 0.828779 0.001618 0.001438 0.168164
5392-40-5 0.005458 0.065849 0.906857 0.021835
101-86-0 0.003086 0.968323 0.028381 0.000210

Table 4: Predicted class by gRain.

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4
5910-85-0 0.000503 0.001592 0.740604 0.257301
3326-32-7 0.002029 0.010125 0.188737 0.799109
2785-87-7 0.072281 0.003438 0.391915 0.532366
108-90-7 0.939476 0.027764 0.000313 0.032447
67-63-0 0.977885 0.016434 0.000304 0.005376
50-21-5 0.977870 0.016438 0.000304 0.005388
119-36-8 0.976166 0.000455 0.000205 0.023174
69-72-7 0.828779 0.001618 0.001438 0.168164
5392-40-5 0.005458 0.065849 0.906857 0.021835
101-86-0 0.003086 0.968323 0.028381 0.000210

Table 5: Predicted class by commercial software.

algorithm for multiple numbers of states and using the Akaike Information Cri­
terion (AIC) to guide selecting the best value.

> cysteineFormula <- cbind(DPRACys,KEC3,KEC1.5)~1

> bioavailabilityFormula <- cbind(logKow,AUC120,Cfree)~1

> nRepsPoLCA <- 1000

> polcaTrainEvalCysteine <- poLCA(cysteineFormula,

nclass = 3,
nrep = nRepsPoLCA,
data = discIts2TrainData,
verbose = FALSE)

> polcaTrainEvalBioavailability <- poLCA(bioavailabilityFormula,
nclass=3,
nrep=nRepsPoLCA,
data = discIts2TrainData,
verbose = FALSE)

Table 7 shows the chemical groupings for the Cysteine latent variable, and

12

1 2 3 4
1 6 1 0 0
2 0 4 0 0
3 0 0 4 1
4 0 0 1 4

Table 6: Confusion matrix for LLNA class predictions on test data. Rows are
instances in the predicted class and columns are instances in the observed class.
(n = 21).

Table 8 shows the groupings for the Bioavailability latent variable. The
same chemicals are grouped together in both cases. However, since the variable
learned by poLCA are unordered, the (arbitrary) labels may be different.

1 2 3
Cluster 1 0 43 0
Cluster 2 0 0 26
Cluster 3 55 0 0

Table 7: Chemical clusters according to the Cysteine latent variable. Rows
represent the classes learned by the commercial software package, and columns
represent the classes found using the R package poLCA.

1 2 3
Cluster 1 46 0 0
Cluster 2 0 0 63
Cluster 3 0 15 0

Table 8: Chemical clusters according to the Bioavailability latent variable. Rows
represent the classes learned by the commercial software package, and columns
represent the classes found using the R package poLCA.

To show that the arbitrary class labels have no effect on the LLNA predic­
tions, we compile a Bayesian network using the Bioavailability and Cysteine
latent variables found using poLCA and make predictions on the training dataset
that was discretized using the cut-points found by the commercial software
package.

> discTrainEvalpoLCA <- discIts2TrainData

> discTrainEvalpoLCA$Cysteine <- polcaTrainEvalCysteine$predclass

> discTrainEvalpoLCA$Bioavailability <- polcaTrainEvalBioavailability$predclass

> its2EvalpoLCACpt <- extractCPT.Commercial(discTrainEvalpoLCA,its2Dag)

> its2EvalpoLCAGin <- grain(compileCPT(its2EvalpoLCACpt))

> trainPredDistEvalpoLCA <- predict.grain(its2EvalpoLCAGin,"LLNA",

type="distribution",

13

newdata=discTrainEvalpoLCA)
>

The results in Table 9 are identical to those in Table 4.

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4
100-06-1 0.971694 0.027977 0.000272 0.000056
122-57-6 0.001713 0.000808 0.793932 0.203547
637-07-0 0.954734 0.021989 0.000309 0.022968
107-75-5 0.000160 0.947495 0.052049 0.000296
3055-86-5 0.906084 0.062214 0.002272 0.029430
121-79-9 0.000443 0.000907 0.776881 0.221769
874-23-7 0.413555 0.086810 0.499461 0.000175
2634-33-5 0.000206 0.000509 0.790698 0.208588
87-86-5 0.057037 0.116919 0.333108 0.492937
119-84-6 0.046210 0.001197 0.207419 0.745174

Table 9: Predicted class by gRain where the latent variables were determined us­
ing poLCA and discretization cut-points were determined using the commercial
software.

5	 Discretization and evaluation of latent vari­
ables using available R packages

The equivalence of the inference methods in gRain and the commercial software
has been established. Next the discretization and latent variable learning are
examined entirely using the discretization and poLCA packages in R.

5.1 CAIM discretization of the training data

The CAIM (class-attribute interdependence maximization) discretization algo­
rithm is available in the discretization R package. Since this is a super­
vised discretization algorithm, meaning that it uses knowledge of the supervis­
ing variable (LLNA in this case) to chose optimal cut-points, it is crucial that
the algorithm not “see” the test data to avoid overly optimistic predictions.
CAIM maximizes the dependency relationship between the class labels and the
continuous-valued attribute, simultaneously minimizing the number of discrete
intervals [7]. CAIM is a “top-down” approach where a single discretization inter­
val is iteratively divided using the boundary that gives the largest value of the
CAIM criterion. The algorithm assumes that the minimum number of intervals
needed is equal to the number of classes in the supervising variable (LLNA).

Functions in the discretization package require that the supervising vari­
able is in the last column of the data.frame.

14

> caimTrainData <- trainData[,-grep("^LLNA.",colnames(trainData))]

> newColOrder <- c(names(caimTrainData)[2:ncol(caimTrainData)],"LLNA")

> newColOrder <- newColOrder[!(newColOrder %in%

c("Cysteine","Bioavailability","TIMES"))]
> caimTrainData <- caimTrainData[,newColOrder]
> trainCaim <- disc.Topdown(caimTrainData, method = 1)
> caimDiscList <- trainCaim$cutp
> names(caimDiscList) <- colnames(trainCaim[[2]])[colnames(trainCaim[[2]]) != "LLNA"]
> discCaimTrainData <- trainCaim$Disc.data
> discCaimTrainData$TIMES <- trainData$TIMES

5.2 Create the latent variables

> cysteinePolcaObj <- poLCA(cysteineFormula,

nclass=3,

nrep=nRepsPoLCA,

data=discCaimTrainData,

verbose=FALSE)

> bioavailabilityPolcaObj <- poLCA(bioavailabilityFormula,

nclass=3,

nrep=nRepsPoLCA,

data=discCaimTrainData,

verbose=FALSE)

> discCaimTrainData$Cysteine <- cysteinePolcaObj$predclass

> discCaimTrainData$Bioavailability <- bioavailabilityPolcaObj$predclass

5.3 Build the Bayesian network

> its2CaimCpt <- extractCPT.Commercial(discCaimTrainData,its2Dag)

> its2CaimGin <- grain(compileCPT(its2CaimCpt))

5.4 Predictions for the training dataset

> trainCaimPredClass <- predict.grain(its2CaimGin,"LLNA",type="class",

newdata=discCaimTrainData)

> trainCaimPredDist <- predict.grain(its2CaimGin,"LLNA",

type="distribution",

newdata=discCaimTrainData)

> trainCaimTable <- table(as.numeric(trainCaimPredClass$pred$LLNA),

discCaimTrainData$LLNA)

15

1 2 3 4
1 31 2 1 2
2 3 22 2 0
3 1 3 26 5
4 1 1 6 18

Table 10: Confusion matrix for training data predictions using the CAIM dis­
cretized dataset. Rows are instances in the predicted class and columns are
instances in the observed class. (n = 124).

5.5 Discretization and predictions for the test dataset

The test data are discretized using the cut-points returned by the disc.Topdown
function. Note that the cut-points begin and end with the minimum and max­
imum values for that variable in the training dataset. Thus, if a value in the
test dataset lies outside of this range that value will is not discretized (an “NA”
will be returned). Values of the three bioavailability variables (logKow, Cfree,
and AUC120) for imidazolidinyl urea (CASRN 39236-46-9) were outside of the
cut-points found by CAIM on the training set. Also, the value of logKow for
salicylic acid (CASRN 69-72-7) was outside of the range found by CAIM. These
values were not changed, but could have been set to the lowest discrete value.
Either approach gives the same result.

> discCaimTestData <- testData[,-grep("^LLNA.|^Bioavailability.|^Cysteine.",
colnames(testData))]

> discCaimTestData <- cutData(discCaimTestData,caimDiscList,to.numeric=TRUE)

> unifLlnaCaimCpt <- its2CaimGin$cptlist
> unifLlnaCaimCpt$LLNA <- parray(c("LLNA"),

list(as.character(1:4)),
values=rep(.25,4))

> its2UnifCaimGin <- grain(compileCPT(unifLlnaCaimCpt))
> testCaimPredDist <- predict.grain(its2UnifCaimGin,

c("LLNA","Bioavailability","Cysteine"),
type="distribution",
newdata=discCaimTestData)

> testCaimPredClass <- predict.grain(its2UnifCaimGin,
c("LLNA","Bioavailability","Cysteine"),
type="class",
newdata=discCaimTestData)

> testCaimTable <- table(as.numeric(testCaimPredClass$pred$LLNA),
testData$LLNA,
dnn=c("predicted","observed"))

Table 11 shows the confusion matrix for the CAIM discretized test data.

16

6

1 2 3 4
1 6 1 0 0
2 0 4 1 0
3 0 0 4 1
4 0 0 0 4

Table 11: Confusion matrix for test data using the CAIM discretized dataset.
Rows are instances in the predicted class and columns are instances in the
observed class. (n = 21).

Discussion

The analysis described in Section 3 was conducted to test the equivalence of the
inference methods used in gRain and the commercial software. The discretiza­
tion cut points and latent variables found using the commercial software were
used to train the network using gRain. Under this scenario, the conditional
distributions for LLNA (P r(LLN A|evidence)) obtained by the both software
packages were identical.

In Section 5, the CAIM algorithm implemented in the R package discretization
was used to discretize the data and the poLCA package was used to learn the la­
tent variables. The overall classification accuracies between the R-based method
and the commercial software package were found to be the same, with three com­
pounds misclassified by both methods. However, two compounds were classified
differently by the two methods. Dihydroeugenol (2-methoxy-4-propyl-phenol)
(CASRN 2785-87-7) was correctly classified as a moderate sensitizer by the R-
based method and incorrectly classified as a strong sensitizer by the commercial
software. Citral (CASRN 5392-40-5) was incorrectly classified as a weak sensi­
tizer by the R-based method and correctly classified as a moderate sensitizer by
the commercial software package. Differences in the discretization approaches
are the most likely explanation for the discrepancies between the two methods.
In the ITS-2 manuscript [4], variables were discretized using either a decision
tree or a k-means algorithm. For some variables, additional cut-points were
added manually following the initial discretization by decision tree or k-means.
Here, a single supervised discretization method, the CAIM algorithm, was used.
CAIM was used for its ease of application (there are no adjustable parameters)
and because it generally produces small numbers of cut-points. Results from
commonly used supervised discretization algorithms may be quite different in
terms of both the location and number of cut points. These differences can have
a significant impact on the parameterization of the Bayesian network.

With respect to the three steps shown in Figure 1, we find that if the same
inputs are provided to steps 2 or 3, both methods give identical results. We
expect this to hold for most discrete networks of moderate size.

17

7 Appendix

7.1 SessionInfo

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] Rgraphviz_2.6.0 xtable_1.7-1 discretization_1.0-1
[4] poLCA_1.4.1 MASS_7.3-29 scatterplot3d_0.3-34
[7] gRain_1.2-2 gRbase_1.6-12 Rcpp_0.11.0
[10] graph_1.40.1

loaded via a namespace (and not attached):
[1] BiocGenerics_0.8.0 igraph_0.7.0 lattice_0.20-24 Matrix_1.1-2
[5] parallel_3.0.2 RBGL_1.38.0 stats4_3.0.2 tools_3.0.2

18

References

[1] Claus Dethlefsen and Søren Højsgaard.	 A common platform for graphical
models in R: The gRbase package. Journal of Statistical Software, 14(17):1–
12, 2005.

[2] Segey Fomel and John F. Claerbout. Reproducible research. Computing in
science engineering, 11(1):5–7, 2009.

[3] Søren Højsgaard. Graphical independence networks with the gRain package
for R. Journal of Statistical Software, 46(10):1–26, 2012.

[4] Joanna Jaworska, Yuri Dancik, Petra Kern, Frank Gerberick, and Andreas
Natsch. Bayesian integrated testing strategy to assess skin sensitization po­
tency: From theory to practice. Journal of Applied Toxicology, 33(11):1353–
1364, 2013.

[5] HyunJi Kim.	 discretization: Data preprocessing, discretization for classifi­
cation, 2012. R package version 1.0-1.

[6] Roger Koenker and Achim Zeileis.	 On reproducible econometric research.
Journal of Applied Econometrics, 24(5):833–847, 2009.

[7] Lukasz A. Kurgan and Krzysztof J. Cios.	 CAIM discretization algorithm.
IEEE Transactions on Know ledge and Data Engineering, 16(2):145–153,
2004.

[8] Friedrich Leisch.	 Sweave: Dynamic generation of statistical reports us­
ing literate data analysis. In Wolfgang H¨ onz, editors, ardle and Bernd R¨
Compstat 2002 — Proceedings in Computational Statistics, pages 575–580.
Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

[9] Drew A. Linzer and Jeffrey B. Lewis. poLCA: An R package for polytomous
variable latent class analysis. Journal of Statistical Software, 42(10):1–29,
2011.

[10] Roger	 D. Peng. Reproducible research in biostatistics. Biostatistics,
10(3):405–408, 2009.

[11] W. Patrick Walters. Modeling, informatics, and the quest for reproducibil­
ity. Journal of Chemical Information and Modeling, 53(7):1529–1530, 2013.

19

	Preliminaries
	Required software
	Sweave background

	Overview of the approach
	Demonstration of the equivalence of R using the discretization and latent variable values found using the commercial software package
	Load necessary packages
	Load the training and test data
	Define the directed acyclic graph (DAG)
	Discretize the training data
	Extract conditional probability tables (CPTs)
	Predict LLNA class for the training dataset
	Predict LLNA class for the test data set

	Evaluation of latent variable learning using the poLCA package
	Discretization and evaluation of latent variables using available R packages
	CAIM discretization of the training data
	Create the latent variables
	Build the Bayesian network
	Predictions for the training dataset
	Discretization and predictions for the test dataset

	Discussion
	Appendix
	SessionInfo

	Bibliography

