
Reproducing the ITS-2 model using R 

Jason R Pirone1, Marjolein Smith1, Nicole Kleinstreuer2, Thomas
 
Burns2, Judy Strickland2, Yuri Dancik4, Richard Morris1, Lori
 

Rinckel2, Warren Casey3, and Joanna Jaworska4
 

1Social & Scientific Systems, Inc., Durham, NC 27713, USA
 
2Integrated Laboratory Systems, Inc., Research Triangle Park, NC
 

27709, USA
 
3National Toxicology Program Interagency Center for the
 

Evaluation of Alternative Toxicological Methods, Division of the
 
National Toxicology Program, National Institute of Environmental
 

Health Sciences, Research Triangle Park, NC 27709, USA
 
4Procter & Gamble NV, Strombeek - Bever, Belgium
 

March 31, 2014 



Contents 

1	 Preliminaries 3
 
1.1 Required software . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 
1.2 Sweave background . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 

2	 Overview of the approach 3
 

3	 Demonstration of the equivalence of R using the discretization
 
and latent variable values found using the commercial software
 
package 5
 
3.1 Load necessary packages . . . . . . . . . . . . . . . . . . . . . . . 5
 
3.2 Load the training and test data . . . . . . . . . . . . . . . . . . . 6
 
3.3 Define the directed acyclic graph (DAG) . . . . . . . . . . . . . . 7
 
3.4 Discretize the training data . . . . . . . . . . . . . . . . . . . . . 7
 
3.5 Extract conditional probability tables (CPTs) . . . . . . . . . . . 9
 
3.6 Predict LLNA class for the training dataset . . . . . . . . . . . . 9
 
3.7 Predict LLNA class for the test data set . . . . . . . . . . . . . . 11
 

4	 Evaluation of latent variable learning using the poLCA package 11
 

5	 Discretization and evaluation of latent variables using available
 
R packages 14
 
5.1 CAIM discretization of the training data . . . . . . . . . . . . . . 14
 
5.2 Create the latent variables . . . . . . . . . . . . . . . . . . . . . . 15
 
5.3 Build the Bayesian network . . . . . . . . . . . . . . . . . . . . . 15
 
5.4 Predictions for the training dataset . . . . . . . . . . . . . . . . . 15
 
5.5 Discretization and predictions for the test dataset . . . . . . . . . 16
 

6 Discussion 

7 Appendix 
7.1 SessionInfo
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Bibliography 

17 

18 

19 



1 Preliminaries 

1.1 Required software 

R is available for download from the Comprehensive R Archive Network (CRAN).
 
The installation process is simple and well-documented on the CRAN website.
 
Once R is installed, the packages gRbase, gRain, poLCA, and discretization,
 
as well as any dependencies should be installed from within R using the install.packages
 
function. The packages graph, RBGL, and Rgraphviz are also necessary and may
 
not be available from CRAN; these packages are available from the Bioconductor
 
site and are installed by running the following commands within R:
 

> source("http://bioconductor.org/biocLite.R") 
> biocLite(c("graph","RBGL","Rgraphviz")) 

See Section 7.1 of this document for the hardware configuration and software 
versions used in conducting this work. The procedure will be similar for most 
operating systems and versions of R. 

1.2 Sweave background 

Sweave [8] is an R function that combines analysis code and formatted text 
into a single report. This level of integration ensures that all results, including 
figures and tables, can be easily reproduced. There is a growing consensus that 
emphasizes practices enabling published research in general to be reproduced 
by others ([2], [6], [10], [11]). 

To regenerate this report, install an appropriate LATEX implementation (e.g., 
Microsoft Windows users should install MiKTeX). The Sweave homepage con­
tains detailed instructions on how to write and compile Sweave documents. An 
integrated development environment (IDE) like RStudio or Emacs+ESS+AUCTeX 
will simplify report generation. 

A separate file, ITS2_R_version.R, that contains only the R code is provided 
for users that do not want to use Sweave. 

2 Overview of the approach 

The integrated test strategy model (ITS-2) described in [4] uses a Bayesian 
network to describe the relationships between in silico, in vitro, and in vivo 
information relevant to skin sensitization. Using a Bayesian network as part 
of an integrated testing strategy provides a probabilistic framework that goes 
beyond simple classification and facilitates complex reasoning about the skin 
sensitization hazard or potency of a chemical given the available evidence. A 
Bayesian network has a qualitative and a quantitative component. The qualita­
tive part consists of a directed acyclic graph (DAG) where each node represents 
an assay outcome and each edge (or arrow) indicates that there is a relationship 
(potentially causal) between the variables it connects (see Figure 2). The quan­
titative component consists of a set of conditional probability tables that give 
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the probability that an assay outcome has a particular value given the values 
taken by its parent1 nodes. 

The original Bayesian network ITS developed by Jaworska et al. (2011; 2013) 
was developed using a used commercial software package. The use of commer­
cial software is convenient in corporate settings where the model is developed 
primarily for internal use, but this practice can limit use of the model by the 
larger scientific and regulatory communities. An implementation using a freely 
available, open-source software would raise awareness of the approach by mak­
ing it easier to test, verify, and build upon the analysis framework. We have 
developed an open-source ITS (OS ITS-2) using tools in the R software package 
to build and perform exact inference using a Bayesian network. 

Figure 1 gives an overview of the process used to build the ITS-2 model. 
The primary computational steps are: 

1. Find cut-points for each assay using a supervised discretization algorithm 
on the training data. Use cut-points to discretize the training and test 
datasets. 

2. Cluster the assays related to bioavailability (logKow, Cfree, and AUC120) 
and cysteine reactivity to construct the Bioavailability (BA) and Cysteine 
latent variables respectively. 

3. Compile the observed and latent variables, the DAG defining the relation­
ships among the variables, and the conditional probability tables for each 
node into a Bayesian network. The compiled Bayesian network is used to 
make LLNA potency class predictions on the test data. 

We do not have access to the exact algorithms used by the commercial soft­
ware for variable discretization, latent variable learning, and Bayesian networks 
inference. However, we do have access to the output from the commercial soft­
ware at each of the steps described in Figure 1. The output of step 1 is a 
transformed dataset where the continuous assay values are converted to dis­
crete values. In step 2, the dataset created in step 1 is augmented to include 
the Bioavailability and Cysteine latent variables. Finally, the transformed 
and augmented dataset is used to build the Bayesian network in step 3. In the 
following sections, we use the datasets produced by the commercial software 
package as inputs to the R model. For example, we examine the similarity of 
the R algorithms for Bayesian network inference by using the dataset produced 
by the commercial software at steps 1 and 2 using as an input. Similarly, to 
compare the latent variable learning algorithm in R with that of the commer­
cial software package, we use the dataset produced by the commercial software 
package at step 1 as an input. 

1The parents of a node are all nodes with a directed edge (arrow) pointing into that node. 
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Figure 1: Diagram showing the key computational steps of the ITS-2 modeling 
process. 

3 Demonstration of the equivalence of R using 
the discretization and latent variable values 
found using the commercial software package 

3.1 Load necessary packages 

The following R packages are sufficient for performing an analysis similar to 
that described in the ITS-2 manuscript [4]. Other R packages available from 
CRAN might have similar functionality. 

•	 gRbase [1] and gRain [3] supply the tools for constructing, parameterizing, 
and performing inference on graphical independence networks. 

•	 discretization [5] contains implementations of several algorithms for 
supervised and unsupervised discretization. 

•	 poLCA [9] is used for learning the latent variables. 

The path referred to by projectDirectory must be changed to reflect the 
location of the files downloaded from the http://ntp.niehs.nih.gov/go/its. To 
regenerate this report in its entirety, all of the following files must be in the 
directory pointed to by projectDirectory 

1.	 ITS2_Lipid_Train_102313.txt 

2.	 ITS2_Lipid_Test_102313.txt 

3.	 ITS2_Supplemental_R_Functions.R 
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4. ITS2_R_version.Rnw 

5. ITS2_Refs.bib 

6. ITS2_Process_Diagram.pdf 

7. Sweave.sty 

If only the R code is of interest, the directory needs to contain only items 1–4. 

> projectDirectory <- "c:/Local_Modeling/AltexSubmission" 

Load the required packages and source the supplemental R functions. 

> library(gRain)
 
> library(poLCA)
 
> library(discretization)
 
> library(xtable)
 
> source(file.path(projectDirectory,"ITS2_Supplemental_R_Functions.R"))
 

Note that gRbase is loaded automatically with gRain. The xtable pack­
age is not necessary for the analysis, but is used to format some of the tables 
included in this document. Additional small functions necessary for the analy­
sis are included in the file ITS2_Supplemental_R_Functions.R. The following 
sections provide step-by-step instructions on conducting an analysis similar to 
that described in the ITS-2 manuscript [4], but using the ITS-2 lipid data set. 

3.2 Load the training and test data 

> trainData <- read.delim(file.path(projectDirectory,"ITS2_Lipid_Train_102313.txt"), 
row.names=1) 

> names(trainData) 

[1] "LLNA" "KEC1.5" "KEC3" 
[4] "IC50" "CD86" "DPRACys" 
[7] "DPRALys" "logKow" "Cfree" 
[10] "AUC120" "TIMES" "Cysteine" 
[13] "Bioavailability" "LLNA.1" "LLNA.2" 
[16] "LLNA.3" "LLNA.4" "LLNA.Expected.Value" 

The training dataset contains 124 chemicals and 18 variables. The variables 
LLNA, KEC1.5, KEC3, IC50, CD86, DPRACys, DPRALys, logKow, Cfree, AUC120, 
and TIMES are described in the ITS-2 manuscript [4]. Cysteine and Bioavailability 
are the values of the latent variables learned using the commercial software pack­
age; the probability that a chemical is in each LLNA class given the evidence is 
given by the variables LLNA.1, LLNA.2, LLNA.3, and LLNA.4. The most likely 
LLNA class is given by LLNA.Expected.Value. 
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> testData <- read.delim(file.path(projectDirectory,"ITS2_Lipid_Test_102313.txt"), 
row.names=1) 

The test dataset contains 21 chemicals and 24 variables. For the test chem­
icals, the Bayesian network was used to make predictions for Bioavailability 
and Cysteine as well as for LLNA, so conditional probability distributions and 
most probable classes for these variables are included. 

3.3 Define the directed acyclic graph (DAG) 

Figure 2 depicts the DAG shown in Figure 2 of the ITS-2 manuscript [4]. 

> its2Dag <- dag(~KEC1.5:IC50:Cysteine +
 
KEC3:IC50:Cysteine +
 
TIMES:Cysteine:LLNA +
 
DPRACys:Cysteine +
 
CD86:Cysteine:LLNA +
 
DPRALys:LLNA +
 
Cysteine:LLNA +
 
Bioavailability:LLNA +
 
logKow:Bioavailability +
 
AUC120:Bioavailability +
 
Cfree:Bioavailability)
 

3.4 Discretize the training data 

The continuous variables are discretized using the cut-points determined using 
the discretization procedures in the commercial software package. These values 
were determined from the ITS-2 lipid dataset, so they are slightly different from 
the values listed in the supplemental material for the ITS-2 manuscript [4]. 

> its2DiscList <- list(Cfree=c(-Inf,0.021,0.068,0.199,Inf),
 
CD86=c(-Inf,27.15,295.8,1025,Inf),
 
logKow=c(-Inf,0.094,1.919,3.834,Inf),
 
AUC120=c(-Inf,1.569,9.101,25.,Inf),
 
DPRACys=c(-Inf,15,70.45,90,Inf),
 
DPRALys=c(-Inf,70,95.35,Inf),
 
KEC3=c(-Inf,34.115,476.19,945.028,Inf),
 
KEC1.5=c(-Inf,10.085,238.765,1098.969,Inf),
 
IC50=c(-Inf,159.26,763.68,Inf))
 

> discIts2TrainData <- trainData[,-grep("^LLNA.",colnames(trainData))]
 
> discIts2TrainData <- cutData(discIts2TrainData,its2DiscList)
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3.5 Extract conditional probability tables (CPTs) 

The commercial software package and gRain have slightly different methods 
to handle unobserved combinations of states in CPTs. In gRain, smoothing 
is done by adding a small user-defined number to each cell in a table of oc­

1 currences. In the commercial package, , where nk is the number of pos­nk 

sible states in the CPT, is added to each cell. The smoothing method used 
by the commercial package can be implemented by making slight modifica­
tions to the extractCPT function (see the extractCPT.Commercial function in 
the ITS2_Supplemental_R_Functions.R file), or by manually constructing the 
CPTs using the xtabs and parray functions. 

> its2Cpt <- extractCPT.Commercial(discIts2TrainData,its2Dag) 
> its2Gin <- grain(compileCPT(its2Cpt)) 

3.6 Predict LLNA class for the training dataset 

gRain contains a simple prediction method. Setting type = class returns the 
most probable class, while setting type = distribution returns the conditional 
distribution. 

> trainPredClass <- predict.grain(its2Gin,"LLNA", 
type="class", 
newdata=discIts2TrainData) 

> trainPredDist <- predict.grain(its2Gin,"LLNA", 
type="distribution", 
newdata=discIts2TrainData) 

> trainPredTable <- table(as.numeric(trainPredClass$pred$LLNA), 
discIts2TrainData$LLNA, 
dnn=c("predicted","observed")) 

1 2 3 4 
1 29 1 1 1 
2 3 21 2 0 
3 3 4 24 4 
4 1 2 8 20 

Table 1: Confusion matrix for LLNA class predictions on training data. Rows 
are instances in the predicted class and columns are instances in the observed 
class. (n = 124). 

The structure of the confusion matrix in Table 1 is the same as in the ITS-2 
manuscript [4]. Furthermore, the conditional distributions for LLNA predicted 
by gRain and the commercial package are exactly the same. Table 2 shows the 
gRain results and Table 3 shows the commercial package results for 10 randomly 
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selected chemicals. These identical results are expected, since both software 
packages carry out exact inference on the Bayesian network using variants of 
the junction tree algorithm. 

> select10Train <- sample(nrow(discIts2TrainData),10)
 
> gRain10 <- cbind(rownames(discIts2TrainData)[select10Train],
 

format(trainPredDist$pred$LLNA[select10Train,],
 
digits = 2, scientific = FALSE))
 

> colnames(gRain10) <- c("CASRN",paste0("LLNA.", 1:4))
 
> commercial10 <- format(as.matrix(trainData[select10Train,
 

grep("LLNA\\.[0-9]",colnames(trainData))]), 
digits = 2, scientific = FALSE)
 

> commercial10 <- cbind(rownames(commercial10), commercial10)
 
> colnames(commercial10) <- c("CASRN",paste0("LLNA.", 1:4))
 

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4 
100-06-1 0.971694 0.027977 0.000272 0.000056 
122-57-6 0.001713 0.000808 0.793932 0.203547 
637-07-0 0.954734 0.021989 0.000309 0.022968 
107-75-5 0.000160 0.947495 0.052049 0.000296 
3055-86-5 0.906084 0.062214 0.002272 0.029430 
121-79-9 0.000443 0.000907 0.776881 0.221769 
874-23-7 0.413555 0.086810 0.499461 0.000175 
2634-33-5 0.000206 0.000509 0.790698 0.208588 
87-86-5 0.057037 0.116919 0.333108 0.492937 
119-84-6 0.046210 0.001197 0.207419 0.745174 

Table 2: Predicted class by gRain. 

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4 
100-06-1 0.971694 0.027977 0.000272 0.000056 
122-57-6 0.001713 0.000808 0.793932 0.203547 
637-07-0 0.954734 0.021989 0.000309 0.022968 
107-75-5 0.000160 0.947495 0.052049 0.000296 
3055-86-5 0.906084 0.062214 0.002272 0.029430 
121-79-9 0.000443 0.000907 0.776881 0.221769 
874-23-7 0.413555 0.086810 0.499461 0.000175 
2634-33-5 0.000206 0.000509 0.790698 0.208588 
87-86-5 0.057037 0.116919 0.333108 0.492937 
119-84-6 0.046210 0.001197 0.207419 0.745174 

Table 3: Predicted class by commercial software package. 
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3.7 Predict LLNA class for the test data set 

The test data is discretized in the exactly the same way as the training data. 

> discIts2TestData <- testData[,-grep("^LLNA.|^Bioavailability.|^Cysteine.", 
colnames(testData))] 

> discIts2TestData <- cutData(discIts2TestData,its2DiscList) 

In the ITS-2 manuscript [4], a uniform distribution on LLNA was applied 
before making predictions on the test data. This is done in gRain by modifying 
and recompiling the its2Gin object. 

> unifLlnaCpt <- its2Gin$cptlist 
> unifLlnaCpt$LLNA <- parray(c("LLNA"),
 

list(as.character(1:4)),
 
values=rep(.25,4))
 

> its2UnifGin <- grain(compileCPT(unifLlnaCpt)) 
> testPredDist <- predict.grain(its2UnifGin, 

c("LLNA","Bioavailability","Cysteine"), 
type="distribution", 
newdata=discIts2TestData) 

> testPredClass <- predict.grain(its2UnifGin, 
c("LLNA","Bioavailability","Cysteine"), 
type="class", 
newdata=discIts2TestData) 

> testPredTable <- table(as.numeric(testPredClass$pred$LLNA),
 
testData$LLNA,
 
dnn=c("predicted","observed"))
 

The gRain predictions on the test set chemicals are identical to those of the 
commercial package. The Bioavailability and Cysteine predictions are also 
identical. The conditional distributions for LLNA are shown in Table 4 (gRain 
predictions) and Table 5 (commercial software predictions). For the sake of 
brevity, results are shown for the first 10 chemicals only. The structure of the 
confusion matrix in Table 6 is the same as that determined using the commercial 
software package. 

4	 Evaluation of latent variable learning using 
the poLCA package 

The the R package poLCA is used to learn the latent variables. The exact al­
gorithm used by the commercial software to learn the latent variable is not 
known. However, we can compare the methods if the datset discretized by the 
commercial software package is used as the input to poLCA. 

The number of states for the Bioavailability and Cysteine latent vari­
ables was set to 3. The number of states can be optimized by running the 
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CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4 
5910-85-0 0.000503 0.001592 0.740604 0.257301 
3326-32-7 0.002029 0.010125 0.188737 0.799109 
2785-87-7 0.072281 0.003438 0.391915 0.532366 
108-90-7 0.939476 0.027764 0.000313 0.032447 
67-63-0 0.977885 0.016434 0.000304 0.005376 
50-21-5 0.977870 0.016438 0.000304 0.005388 
119-36-8 0.976166 0.000455 0.000205 0.023174 
69-72-7 0.828779 0.001618 0.001438 0.168164 
5392-40-5 0.005458 0.065849 0.906857 0.021835 
101-86-0 0.003086 0.968323 0.028381 0.000210 

Table 4: Predicted class by gRain. 

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4 
5910-85-0 0.000503 0.001592 0.740604 0.257301 
3326-32-7 0.002029 0.010125 0.188737 0.799109 
2785-87-7 0.072281 0.003438 0.391915 0.532366 
108-90-7 0.939476 0.027764 0.000313 0.032447 
67-63-0 0.977885 0.016434 0.000304 0.005376 
50-21-5 0.977870 0.016438 0.000304 0.005388 
119-36-8 0.976166 0.000455 0.000205 0.023174 
69-72-7 0.828779 0.001618 0.001438 0.168164 
5392-40-5 0.005458 0.065849 0.906857 0.021835 
101-86-0 0.003086 0.968323 0.028381 0.000210 

Table 5: Predicted class by commercial software. 

algorithm for multiple numbers of states and using the Akaike Information Cri­
terion (AIC) to guide selecting the best value. 

> cysteineFormula <- cbind(DPRACys,KEC3,KEC1.5)~1
 
> bioavailabilityFormula <- cbind(logKow,AUC120,Cfree)~1
 
> nRepsPoLCA <- 1000
 
> polcaTrainEvalCysteine <- poLCA(cysteineFormula,
 

nclass = 3, 
nrep = nRepsPoLCA, 
data = discIts2TrainData, 
verbose = FALSE) 

> polcaTrainEvalBioavailability <- poLCA(bioavailabilityFormula, 
nclass=3, 
nrep=nRepsPoLCA, 
data = discIts2TrainData, 
verbose = FALSE) 

Table 7 shows the chemical groupings for the Cysteine latent variable, and 
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1 2 3 4 
1 6 1 0 0 
2 0 4 0 0 
3 0 0 4 1 
4 0 0 1 4 

Table 6: Confusion matrix for LLNA class predictions on test data. Rows are 
instances in the predicted class and columns are instances in the observed class. 
(n = 21). 

Table 8 shows the groupings for the Bioavailability latent variable. The 
same chemicals are grouped together in both cases. However, since the variable 
learned by poLCA are unordered, the (arbitrary) labels may be different. 

1 2 3 
Cluster 1 0 43 0 
Cluster 2 0 0 26 
Cluster 3 55 0 0 

Table 7: Chemical clusters according to the Cysteine latent variable. Rows 
represent the classes learned by the commercial software package, and columns 
represent the classes found using the R package poLCA. 

1 2 3 
Cluster 1 46 0 0 
Cluster 2 0 0 63 
Cluster 3 0 15 0 

Table 8: Chemical clusters according to the Bioavailability latent variable. Rows 
represent the classes learned by the commercial software package, and columns 
represent the classes found using the R package poLCA. 

To show that the arbitrary class labels have no effect on the LLNA predic­
tions, we compile a Bayesian network using the Bioavailability and Cysteine 
latent variables found using poLCA and make predictions on the training dataset 
that was discretized using the cut-points found by the commercial software 
package. 

> discTrainEvalpoLCA <- discIts2TrainData
 
> discTrainEvalpoLCA$Cysteine <- polcaTrainEvalCysteine$predclass
 
> discTrainEvalpoLCA$Bioavailability <- polcaTrainEvalBioavailability$predclass
 
> its2EvalpoLCACpt <- extractCPT.Commercial(discTrainEvalpoLCA,its2Dag)
 
> its2EvalpoLCAGin <- grain(compileCPT(its2EvalpoLCACpt))
 
> trainPredDistEvalpoLCA <- predict.grain(its2EvalpoLCAGin,"LLNA",
 

type="distribution", 
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newdata=discTrainEvalpoLCA) 
> 

The results in Table 9 are identical to those in Table 4. 

CASRN LLNA.1 LLNA.2 LLNA.3 LLNA.4 
100-06-1 0.971694 0.027977 0.000272 0.000056 
122-57-6 0.001713 0.000808 0.793932 0.203547 
637-07-0 0.954734 0.021989 0.000309 0.022968 
107-75-5 0.000160 0.947495 0.052049 0.000296 
3055-86-5 0.906084 0.062214 0.002272 0.029430 
121-79-9 0.000443 0.000907 0.776881 0.221769 
874-23-7 0.413555 0.086810 0.499461 0.000175 
2634-33-5 0.000206 0.000509 0.790698 0.208588 
87-86-5 0.057037 0.116919 0.333108 0.492937 
119-84-6 0.046210 0.001197 0.207419 0.745174 

Table 9: Predicted class by gRain where the latent variables were determined us­
ing poLCA and discretization cut-points were determined using the commercial 
software. 

5	 Discretization and evaluation of latent vari­
ables using available R packages 

The equivalence of the inference methods in gRain and the commercial software 
has been established. Next the discretization and latent variable learning are 
examined entirely using the discretization and poLCA packages in R. 

5.1 CAIM discretization of the training data 

The CAIM (class-attribute interdependence maximization) discretization algo­
rithm is available in the discretization R package. Since this is a super­
vised discretization algorithm, meaning that it uses knowledge of the supervis­
ing variable (LLNA in this case) to chose optimal cut-points, it is crucial that 
the algorithm not “see” the test data to avoid overly optimistic predictions. 
CAIM maximizes the dependency relationship between the class labels and the 
continuous-valued attribute, simultaneously minimizing the number of discrete 
intervals [7]. CAIM is a “top-down” approach where a single discretization inter­
val is iteratively divided using the boundary that gives the largest value of the 
CAIM criterion. The algorithm assumes that the minimum number of intervals 
needed is equal to the number of classes in the supervising variable (LLNA). 

Functions in the discretization package require that the supervising vari­
able is in the last column of the data.frame. 
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> caimTrainData <- trainData[,-grep("^LLNA.",colnames(trainData))]
 
> newColOrder <- c(names(caimTrainData)[2:ncol(caimTrainData)],"LLNA")
 
> newColOrder <- newColOrder[!(newColOrder %in%
 

c("Cysteine","Bioavailability","TIMES"))] 
> caimTrainData <- caimTrainData[,newColOrder] 
> trainCaim <- disc.Topdown(caimTrainData, method = 1) 
> caimDiscList <- trainCaim$cutp 
> names(caimDiscList) <- colnames(trainCaim[[2]])[colnames(trainCaim[[2]]) != "LLNA"] 
> discCaimTrainData <- trainCaim$Disc.data 
> discCaimTrainData$TIMES <- trainData$TIMES 

5.2 Create the latent variables 

> cysteinePolcaObj <- poLCA(cysteineFormula,
 
nclass=3,
 
nrep=nRepsPoLCA,
 
data=discCaimTrainData,
 
verbose=FALSE)
 

> bioavailabilityPolcaObj <- poLCA(bioavailabilityFormula,
 
nclass=3,
 
nrep=nRepsPoLCA,
 
data=discCaimTrainData,
 
verbose=FALSE)
 

> discCaimTrainData$Cysteine <- cysteinePolcaObj$predclass
 
> discCaimTrainData$Bioavailability <- bioavailabilityPolcaObj$predclass
 

5.3 Build the Bayesian network 

> its2CaimCpt <- extractCPT.Commercial(discCaimTrainData,its2Dag)
 
> its2CaimGin <- grain(compileCPT(its2CaimCpt))
 

5.4 Predictions for the training dataset 

> trainCaimPredClass <- predict.grain(its2CaimGin,"LLNA",type="class",
 
newdata=discCaimTrainData)
 

> trainCaimPredDist <- predict.grain(its2CaimGin,"LLNA",
 
type="distribution",
 
newdata=discCaimTrainData)
 

> trainCaimTable <- table(as.numeric(trainCaimPredClass$pred$LLNA),
 
discCaimTrainData$LLNA)
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1 2 3 4 
1 31 2 1 2 
2 3 22 2 0 
3 1 3 26 5 
4 1 1 6 18 

Table 10: Confusion matrix for training data predictions using the CAIM dis­
cretized dataset. Rows are instances in the predicted class and columns are 
instances in the observed class. (n = 124). 

5.5 Discretization and predictions for the test dataset 

The test data are discretized using the cut-points returned by the disc.Topdown 
function. Note that the cut-points begin and end with the minimum and max­
imum values for that variable in the training dataset. Thus, if a value in the 
test dataset lies outside of this range that value will is not discretized (an “NA” 
will be returned). Values of the three bioavailability variables (logKow, Cfree, 
and AUC120) for imidazolidinyl urea (CASRN 39236-46-9) were outside of the 
cut-points found by CAIM on the training set. Also, the value of logKow for 
salicylic acid (CASRN 69-72-7) was outside of the range found by CAIM. These 
values were not changed, but could have been set to the lowest discrete value. 
Either approach gives the same result. 

> discCaimTestData <- testData[,-grep("^LLNA.|^Bioavailability.|^Cysteine.", 
colnames(testData))] 

> discCaimTestData <- cutData(discCaimTestData,caimDiscList,to.numeric=TRUE) 

> unifLlnaCaimCpt <- its2CaimGin$cptlist 
> unifLlnaCaimCpt$LLNA <- parray(c("LLNA"), 

list(as.character(1:4)), 
values=rep(.25,4)) 

> its2UnifCaimGin <- grain(compileCPT(unifLlnaCaimCpt)) 
> testCaimPredDist <- predict.grain(its2UnifCaimGin, 

c("LLNA","Bioavailability","Cysteine"), 
type="distribution", 
newdata=discCaimTestData) 

> testCaimPredClass <- predict.grain(its2UnifCaimGin, 
c("LLNA","Bioavailability","Cysteine"), 
type="class", 
newdata=discCaimTestData) 

> testCaimTable <- table(as.numeric(testCaimPredClass$pred$LLNA), 
testData$LLNA, 
dnn=c("predicted","observed")) 

Table 11 shows the confusion matrix for the CAIM discretized test data. 
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6 

1 2 3 4 
1 6 1 0 0 
2 0 4 1 0 
3 0 0 4 1 
4 0 0 0 4 

Table 11: Confusion matrix for test data using the CAIM discretized dataset. 
Rows are instances in the predicted class and columns are instances in the 
observed class. (n = 21). 

Discussion 

The analysis described in Section 3 was conducted to test the equivalence of the 
inference methods used in gRain and the commercial software. The discretiza­
tion cut points and latent variables found using the commercial software were 
used to train the network using gRain. Under this scenario, the conditional 
distributions for LLNA (P r(LLN A|evidence)) obtained by the both software 
packages were identical. 

In Section 5, the CAIM algorithm implemented in the R package discretization 
was used to discretize the data and the poLCA package was used to learn the la­
tent variables. The overall classification accuracies between the R-based method 
and the commercial software package were found to be the same, with three com­
pounds misclassified by both methods. However, two compounds were classified 
differently by the two methods. Dihydroeugenol (2-methoxy-4-propyl-phenol) 
(CASRN 2785-87-7) was correctly classified as a moderate sensitizer by the R-
based method and incorrectly classified as a strong sensitizer by the commercial 
software. Citral (CASRN 5392-40-5) was incorrectly classified as a weak sensi­
tizer by the R-based method and correctly classified as a moderate sensitizer by 
the commercial software package. Differences in the discretization approaches 
are the most likely explanation for the discrepancies between the two methods. 
In the ITS-2 manuscript [4], variables were discretized using either a decision 
tree or a k-means algorithm. For some variables, additional cut-points were 
added manually following the initial discretization by decision tree or k-means. 
Here, a single supervised discretization method, the CAIM algorithm, was used. 
CAIM was used for its ease of application (there are no adjustable parameters) 
and because it generally produces small numbers of cut-points. Results from 
commonly used supervised discretization algorithms may be quite different in 
terms of both the location and number of cut points. These differences can have 
a significant impact on the parameterization of the Bayesian network. 

With respect to the three steps shown in Figure 1, we find that if the same 
inputs are provided to steps 2 or 3, both methods give identical results. We 
expect this to hold for most discrete networks of moderate size. 
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7 Appendix 

7.1 SessionInfo 

> sessionInfo()
 

R version 3.0.2 (2013-09-25)
 
Platform: x86_64-w64-mingw32/x64 (64-bit)
 

locale:
 
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252 
[3] LC_MONETARY=English_United States.1252 
[4] LC_NUMERIC=C 
[5] LC_TIME=English_United States.1252 

attached base packages: 
[1] grid stats graphics grDevices utils datasets methods 
[8] base 

other attached packages: 
[1] Rgraphviz_2.6.0 xtable_1.7-1 discretization_1.0-1 
[4] poLCA_1.4.1 MASS_7.3-29 scatterplot3d_0.3-34 
[7] gRain_1.2-2 gRbase_1.6-12 Rcpp_0.11.0 
[10] graph_1.40.1 

loaded via a namespace (and not attached): 
[1] BiocGenerics_0.8.0 igraph_0.7.0 lattice_0.20-24 Matrix_1.1-2 
[5] parallel_3.0.2 RBGL_1.38.0 stats4_3.0.2 tools_3.0.2 
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