A. INTRODUCTION

EPA’s ToxCast program has generated data on a battery of 821 in vitro endpoints for 1066 compounds including pharmacological, natural products, pesticidal active ingredients, consumer use chemicals and industrial ingredients [1].

To increase the diversity of in vitro assays used to assess developmental toxicity, the ToxCast library was evaluated in the Stemina devToxQuickPredict [qP] platform [2]. This assay measures two small molecules (ornithine, cystine) in medium conditioned by human embryonic stem (hES) cells yielding an ornithine:cystine ratio (o/c) indicative of an imbalance in metabolism predictive for teratogenicity in a human system.

Here, we provide a preliminary evaluation of the results focusing on metrics of assay quality, performance, and predictivity.

B. METHODS

Platform: Metabolomic analysis of the hES cell secretome for predictive developmental toxicity (devTox platform) was reported in 2010 [3]. A 2011 pilot study conducted with 11 ToxCast chemicals predicted developmental toxicity in concordance with animal data with 83% accuracy [4]. In 2013, the Stemina devTox-qP platform was developed as a high throughput screening (HTS) assay for developmental toxicity testing [2]. The model was trained with 23 pharmaceuticals (96% accurate). An independent 13 pharmaceutical test set with known (human) teratogenicity was 77% accurate.

Dosing: H9 cells (WA09 line, WiCell Research Institute) were cultured in 96-well plates. Each experimental plate included methyltrexate (MTX) reference concentrations as calibration standards for negative (0 nM) and positive (40 uM) response as well as media blanks on 0.1% DMSO vehicle. Undifferentiated cells were exposed for 72h to test compound (blinded or in triplicates) with media and test compound replacement every 24h; maximum test concentration (MTC) for single concentration screen and/or 8-plate conc. series set at 1, 10, or 100 uM based on ToxCast cytotoxicity burst (TC-Cytoburst) [1] or compound availability.

Evaluation: Cell-conditioned media from the final 48h treatment period was analyzed by LC-MS to determine ornithine/cystine (o/c) ratio. Concurrent cell viability was assessed with the CellTiter-Fluo TM assay (Promega). The cytotoxicity Relative Fluence Unit (RFU) was background corrected and normalized to RFU of the neutral control (0.1% DMSO).

C. METRICS OF ASSAY QUALITY

Quality Standards. Methotrexate (MTX) in the ToxCast library (blinded) gave ornithine/cystine (o/c) ratio and cell viability (o/c) measures identical to the calibration standards.

D. METRICS OF ASSAY PERFORMANCE AND PREDICTIVITY

Replicate Samples. Concentration (8-point) response for 13 REPs (n=2) with test strategy setting maximum test concentration (MTC) below ToxCast cytotoxicity burst (TC-Cytoburst).

E. SUMMARY AND TRANSLATION

- To date, we tested 1079 samples (1066 chemicals = 13 repeats).
- Setting the MTC based on ~18 cytotoxicity assays in ToxCAST® [1] the initial screen showed 3-16% active and 84% predictive accuracy (consistent with previous studies [2-4]).
- 8-point conc. series on an a priori selection of 127 chemicals and 13 reps completed; as concentration increases, positives move into a track where o/c-ratio is linked to cell viability.
- Testing conc. series of a non-a priori subset of 144 samples is currently underway. This will enable the model to be trained with ToxCast (in vitro) and ToxRefDB (in vivo) data.

Mouse ES (mES) versus human (hES) cell platforms. Comparison at an LEC for 1054 ToxCast chemicals tested both ways. Results from the o/c-ratio (3-day undifferentiated hES) cells were conditioned on the mES cell response in adherent cultures [6] for Gooseoid (GSC) protein expression - a biomarker for gastrulation (4-days of culture).

References: