A. INTRODUCTION

EA's ToxCast program has generated a data set on 821 in vitro endpoints for 1066 compounds including pharmaceuticals, natural products, pesticidal active ingredients, consumer use chemicals and industrial ingredients [1].

To increase the diversity of in vitro assays used to assess developmental toxicity, the ToxCast library was evaluated in the Stemina deCODEquickPREDICT® [qP] platform [2]. This assay measures two small molecules (ornithine, cystine) in medium conditioned by human embryonic stem (hES) cells yielding an ornithine:cystine ratio (o/c ratio) indicative of an imbalance in metabolism predictive for teratogenicity in a human system.

Here, we provide a preliminary evaluation of the results focusing on metrics of assay quality, performance, and predictive utility.

B. METHODS

Platform:

Metabolomic analysis of the hES cell secretome for predictive developmental toxicity (deCODEqP platform) was reported in 2010 [3]. A 2011 pilot study conducted with 11 ToxCast chemicals predicted developmental toxicity in concordance with animal data with 83% accuracy [4]. In 2013, the Stemina deCODEqP® platform was developed as a high throughput screening (HTS) assay for developmental toxicity testing [2]. The model was trained with 23 pharmaceuticals (96% accurate). An independent 13 pharmaceutical test set with known (human) teratogenicity was 77% accurate.

Dosing:

H9 cells (WA09 line, WiCell Research Institute) were cultured in 96-well plates. Each experimental plate included methotrexate (MTX) reference controls as calibration standards for negative (0 µM) and positive (100 µM) response as well as media blanks and on 0.1% DMSO vehicle. Undifferentiated cells were exposed for 72h to test compound (blinded and in triplicate) with media and test compound replacement every 24h; maximum test concentration (MTC) for single concentration screen and 8-point conc. series was set at 1, 10, 100 µM on test compound cytotoxicity burst (TC-CytoBurst) [1] or compound available.

Evaluation:

Conditioned media from the final 24h treatment period was analyzed by LC-MS to determine ornithine/cystine (o/c) ratio. Concurrent cell viability was assessed by the CellFluir-CellTM assay (Promega). The cytotoxicity Relative Fluorescent Unit (RFU) was background corrected and normalized to RFU of the neutral control (0.1% DMSO). Teratogen Index [3] using the default threshold values 0.88 and concurrent cell viability (RFU values for test compound relative to DMSO control).

C. METRICS OF ASSAY QUALITY

Quality Standards. Methotrexate (MTX) in the ToxCast library (blinded) gave ornithine/cystine (o/c) ratio and cell viability (o/c) measures identical to the calibration standards.

Replicate Samples. Concentration (8-point) response for 13 REPs (n=2) with strategy setting maximum test concentration (MTC) below ToxCast cytoxicity burst (TC-CytoBurst).

E. SUMMARY and TRANSLATION

A blinded study under EPA contract EP-D-13-055 is evaluating the ToxCast Phase II-ll library http://www.epa.gov/ncct/toxcast/chemicals.html in the Stemina deCODEqP® platform [2].

To date, we tested 1079 samples (1066 chemicals + 13 repeats).

Setting the MTC based on ~18 cytotoxicity assays in ToxCast® [1] the initial screen showed 15%-16% active and 84% predictive accuracy (consistent with previous studies [2-4]).

8-point conc. series on an a priori selection of 127 chemicals and 13 repts completed; as concentration increases, positives move into a track where o/c-ratio is linked to cell viability.

Testing conc. series of a non-a priori subset of 144 samples is currently underway. This will enable the model to be trained with ToxCast in vitro and ToxRefDB® (in vivo) data.

Mouse ES (mES) versus human (hES) cell platforms. Comparison at an LEC for 1054 ToxCast chemicals tested both ways. Results from the o/c-ratio (3-day undifferentiated hES cells) were conditioned on the mES cell response in adherent cultures [6] for Gooseneck (GSGD) protein expression - a biomarker for gastrulation [4-days of culture].

References