COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC and research information from NIH.

U.S. flag

An official website of the United States government

Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

ICCVAM Logo

ICCVAM Biennial Report 2018-2019

ICCVAM Biennial Report 2018-2019
Menu
https://ntp.niehs.nih.gov/go/892645

Cell Line Selection for High-throughput Transcriptomics

Transcriptomics uses a cell’s overall gene expression to assess many aspects of biology in the cell, including its normal function and response to toxicity. A question of interest is whether the cell types used in high-throughput transcriptomics assays need to reflect human biological diversity to identify different classes of toxicants and clarify the relevant biology for toxicity testing. To evaluate this question, EPA and NIEHS collaboratively used transcriptomics databases and other resources to identify cell lines that maximized biological diversity at the level of gene expression. Using a newer high-throughput transcriptomics technology, gene expression will be assessed in these cells under normal conditions and with chemical treatment. Ultimately, comparisons will identify selected cells for high-throughput transcriptomics chemical screening and also enlighten how future cell lines should be chosen. An abstract providing an update was accepted for presentation at the April 2020 meeting of the Midsouth Computational Biology and Bioinformatics Society.

Tags: