COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC and research information from NIH.

U.S. flag

An official website of the United States government

Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

ICCVAM Logo

ICCVAM Biennial Report 2018-2019

ICCVAM Biennial Report 2018-2019
Menu
https://ntp.niehs.nih.gov/go/892677

Expansion of Pathway Coverage by Tox21 HTS Assays for Better Prediction of Adverse Drug Effects

To date, Tox21 HTS assays have focused primarily on selected nuclear receptor and stress response pathways. This relatively limited focus suggests that activity in other toxicity pathways has not been adequately assessed; it is likely that some unexplored pathways relate to unanticipated adverse drug effects. Therefore, expanding the coverage of biological responses by adding assays that probe under-represented pathways in the current Tox21 assay portfolio may improve the predictivity of Tox21 data. Scientists at FDA, NIEHS, and NCATS are systematically identifying these under-represented pathways in a data-driven approach and nominating assays for development and Tox21 chemical screening. The data generated (Huang et al. 2018) will be used to build models for human toxicity prediction, focusing on common adverse drug effects such as drug-induced liver injury and cardiotoxicity. An initial panel of targets and pathways has been identified (Huang et al. 2019) using existing drug-target annotations and adverse effect information obtained from the literature and public databases, such as DrugBank. In parallel, human toxicity data are being collected and curated from the literature. These data will be used to target additional cellular pathways for future assay development and validation.

Tags: