Adrenal Gland – Mineralization

Figure Legend:
Figure 1 Adrenal gland, Cortex - Mineralization in a male F344/N rat from a chronic study. There are multiple foci of coarsely granular, dark basophilic material in the cortex (arrows).
Figure 2 Adrenal gland, Cortex - Mineralization in a male F344/N rat from a chronic study (higher magnification of Figure 1). There is a focus of coarsely granular, dark basophilic material in the cortex (arrow).

Comment: Mineralization in the adrenal gland (Figure 1 and Figure 2) in rats and mice is usually the dystrophic form and is a sequela to other lesions, such as necrosis, hemorrhage, or thrombosis. It therefore tends to occur with generally low, sporadic incidences unrelated to treatment. The cortex is more often affected than the medulla.

Mineralization is characterized as variably sized, discrete aggregates of finely to coarsely granular dark basophilic material (Figure 1 and Figure 2) that are scattered through the adrenal parenchyma, often adjacent to or within areas of fibrosis, degeneration, necrosis, hemorrhage, and/or thrombosis.

Recommendation: If mineralization of the adrenal gland occurs as a primary, treatment-related change, it should be diagnosed and assigned a severity grade and site modifier (i.e., cortex, medulla, or capsule). Mineralization that is a feature of another pathologic process (e.g., fibrosis or thrombosis) should not be diagnosed separately, unless warranted by severity.
Adrenal Gland – Mineralization

References:
Full Text: https://www.toxpath.org/ssdnc/EndocrineNonprolifRat.pdf

National Toxicology Program. 1999. NTP TR-481 Toxicology and Carcinogenesis Studies of Oleic Acid Diethanolamine Condensate (CAS No. 93-83-4) in F344/N Rats and B6C3F1 Mice (Dermal Studies). NTP, Research Triangle Park, NC.
Abstract: http://ntp.niehs.nih.gov/go/9764

National Toxicology Program. 2007. NTP TR-543. Toxicology and Carcinogenesis Studies of α-Methylstyrone (CAS No. 98-83-9) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP, Research Triangle Park, NC.
Abstract: http://ntp.niehs.nih.gov/go/28010

Authors:
Mark J. Hoenerhoff, DVM, PhD, DACVP
Associate Professor
Veterinary Pathologist, In Vivo Animal Core
Unit for Laboratory Animal Medicine
University of Michigan
Ann Arbor, MI

Georgette D. Hill, DVM, PhD
Toxicologic Pathologist/Assistant Pathology Program Manager
Comparative Molecular Pathology Division
Integrated Laboratory Systems, Inc.
Research Triangle Park, NC

Margarita M. Gruebbel, DVM, PhD, DACVP
Senior Pathologist
Experimental Pathology Laboratories, Inc.
Research Triangle Park, NC