NTP Evaluation Concept

Immunotoxicity Associated with Exposure to PFOA or PFOS

Andrew Rooney, PhD
Office of Health Assessment and Translation
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
December 10, 2014
• Background and Rationale
• Issues and Key Scientific Questions
• Specific Aims
• Proposed Approach
• Significance
• Questions
Perfluoroalkyl acids
- Used extensively in commercial/industrial applications last 50 years
 - food packaging
 - lubricants
- PFOA and PFOS
 - Extremely persistent and widely distributed in the environment
 - No longer manufactured in United States (voluntary agreements)
 - 3M phased out production of PFOS in 2002
 - 8 companies in EPA’s PFOA stewardship program
 - will reduce global emission of PFOA and chemicals that break down to PFOA
 - will eliminate emissions / product content of PFOA by 2015
PFOA and PFOS are the most commonly detected perfluoroalkyl acids in environment and serum.

<table>
<thead>
<tr>
<th>Survey years</th>
<th>PFOA</th>
<th>PFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2000</td>
<td>5.21 (4.72-5.74)</td>
<td>30.4 (27.1-33.9)</td>
</tr>
<tr>
<td>2003-2004</td>
<td>3.95 (3.65-4.27)</td>
<td>20.7 (19.2-22.3)</td>
</tr>
<tr>
<td>2005-2006</td>
<td>3.92 (3.48-4.42)</td>
<td>17.1 (16.0-18.2)</td>
</tr>
<tr>
<td>2007-2008</td>
<td>4.12 (4.01-4.24)</td>
<td>13.2 (12.2-14.2)</td>
</tr>
<tr>
<td>2009-2010</td>
<td>3.07 (2.81-3.36)</td>
<td>9.32 (8.13-10.7)</td>
</tr>
</tbody>
</table>

National Health and Nutrition Examination Survey data (CDC, 2014)
• Studies in humans
 – Recent (2012-14) reports of PFOA- and PFOS-associated functional immune changes
 • Immune effects in adults in OH and WV
 PFOA contaminated public drinking water
 – Suppressed antibody response to vaccination in adults (Looker, 2014)
 – Increased incidence of ulcerative colitis (autoimmune link) (Steenland, 2013)
 • Immune effects in children in Norway and Faroe Islands (prospective)
 General population level exposure to PFOA and PFOS
 – Suppressed antibody response to vaccination (Granum, 2013; Grandjean, 2012)

• Studies in animals
 – Experimental studies
 • Both innate and adaptive immunity including suppression of the antibody response
 • Altered hypersensitivity, inflammatory response and cytokine signaling
 – Wildlife studies

• Mechanistic studies
• PFCs as a class are under toxicological testing at NTP
 – Immunotoxicity testing for PFOA or PFOS are not currently included because there are sufficient published studies of immunity

• Federal government assessments of PFOA and PFOS
 – ATSDR
 • Currently revising the 2009 Draft Toxicological Profile
 – EPA
 • Office of Pollution Prevention and Toxics (OPPTS)
 – 2005 draft health assessment;
 – Ongoing evaluation focused on carcinogenicity
 • Office of Water
 – Currently revising 2014 draft health effects document
• NTP developed case studies to test the OHAT framework for systematic review and evidence integration

 – Case studies explored the methods for the systematic review

 – Hazard conclusions were not considered

 – Review protocols developed as examples

 – Only subsets of studies were used to test the methods

• Nominations

 – Multiple requests to develop hazard identification conclusions for PFOA- and PFOS-associated immunotoxicity

Background and Rationale

PFOA/PFOS Immunotoxicity

• Exposure
• Human and animal data
• Detailed protocol
• Do we complete evaluation?
1) Developing conclusions across the two chemicals

Proposed Approach:
- Conclusions will be developed for PFOA and PFOS separately
- Ability to make cross-chemical conclusions will then be considered

2) Relevance of peroxisome proliferator-activated receptor alpha (PPARα) as a mechanism for immune effects given species differences between animal models and humans

Proposed Approach:
- Immune studies in non-human mammals will be considered directly relevant for human health unless compelling evidence to the contrary is identified during the evaluation
- Immune effects appear partially or wholly independent of PPARα
 - PFOA/PFOS suppression of antibody response in mice (Dewitt, 2012)
3) Importance of pronounced differences in elimination rates for PFOA and PFOS between experimental animals and humans

Proposed Approach:

- Known, species, gender, and age differences in elimination will be considered in evaluating the consistency of results reported for a given health effect.

- Pharmacokinetic adjustment would be required to evaluate across species consistency.

- PFOA and PFOS elimination rates
 - Long half-life in humans (2-8 years)
 - Short half-life in monkeys (weeks to months) & rodents (hours to days)
The overall objective is to develop hazard identification conclusions whether or not exposure to PFOA or PFOS is associated with immunotoxicity or immune-related health effects.

Key Questions (KQ)

<table>
<thead>
<tr>
<th>KQ1</th>
<th>Human studies</th>
<th>What is our confidence in the human and animal bodies of evidence for the association between exposure to PFOA or PFOS and immunotoxicity or immune-related health effects?</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ2</td>
<td>Animal studies</td>
<td>How does the evidence from other relevant studies (e.g., mechanistic or in vitro studies) support or refute the biological plausibility of the association between exposure to PFOA or PFOS and immunotoxicity or immune-related health effects?</td>
</tr>
<tr>
<td>KQ3</td>
<td>Mechanistic studies</td>
<td></td>
</tr>
</tbody>
</table>
Proposed Approach

- Literature-based evaluation
 - OHAT Approach to systematic review and evidence integration

Systematic Review

Develop Protocol
- Human
- Animal
- Mechanistic

Identify Evidence
- Search for Studies
- Select Studies
- Extract Data

Evaluate Evidence
- Assess Individual Study Quality

Evidence Integration

Integrate Evidence
- Rate Confidence in Bodies of Evidence
- Develop Hazard Identification Conclusions
References identified through database searches (n=5,534)

References identified through other sources (n=4)

Identification

References after duplicate removal
Title-abstract screened for relevance and eligibility (n=2,675)

Screening

Full-text articles assessed for relevance and eligibility (n= 315)

Included

Studies included for data extraction, and internal validity assessment (n=114)

- Human studies (n=18)
- Animal studies (n=80*)
- Mechanistic data (n=19*)

*3 studies with both animal and mechanistic data

of full-text articles excluded for pre-established criteria, with reasons
- Exposure not relevant (n=38)
- Outcome not relevant (n=34)
- Review (n=74)
- Other (n=55)

References excluded for criteria established in protocol (n=2,364)

References identified through updating the database searches (n=305)

October 2014 Update

2013 literature search
• Anticipated to reach hazard ID conclusions for PFOA and PFOS-associated immunotoxicity

 – Apply systematic review methods to evaluate recent human functional immune evidence in context of animal and mechanistic data

 – Outputs shared with public and other agencies
 • Individual study quality / internal validity assessment
 • Data extraction files

• Leverage case study work

• Potential “next steps”

 – Consider the use of PFOA and PFOS data to explore immune and inflammation-related endpoints in the Tox21 data

 – Consider methods of using the relatively well studied PFOA and PFOS data along with mechanistic or \textit{in vitro} data on other perfluoroalkyl acids to evaluate the potential immunotoxicity of data poor chemicals

Significance
Acknowledgements

• **Office of Health Assessment and Translation**
 – Abee Boyles
 – Kembra Howdeshell
 – Katie Pelch
 – Kyla Taylor
 – Kristina Thayer, Director
 – Vickie Walker

• **Office of Science Information Management**
 – Stephanie Holmgren

• **Toxicology Branch**
 – Chad Blystone
 – Dori Germolec

• **Protocol Technical Advisors**
 – Jamie Dewitt, ECU Department Pharmacology and Toxicology
 – Tony Fletcher, London School of Hygiene and Tropical Medicine
 – Dori Germolec, NIEHS/NTP
 – Christopher Lau, US EPA, ORD/NHEERL
 – Roberta Scherer, Johns Hopkins, Bloomberg School of Public Health
• To review and comment on the draft OHAT concept and determine whether the evaluation is an appropriate use of NTP resources.

• An evaluation concept is a brief document outlining the rationale, significance, approach, and expected outcome of a proposed evaluation.
1) Comment on the merit of the proposed evaluation relative to the mission and goals of the NTP. *The NTP’s stated goals are to: Provide information on potentially hazardous substances to all stakeholders; Develop and validate improved testing methods; Strengthen the science base in toxicology; Coordinate toxicology testing programs across DHHS* (http://ntp.niehs.nih.gov/go/test).

2) Comment on the clarity and validity of the rationale for the proposed evaluation as articulated in the NTP evaluation concept document.
 - Has the scope of the problem been adequately defined?
 - Have the relevant scientific issues been identified and clearly articulated?
 - Are you aware of other scientific issues that need to be considered?

3) Comment on the proposed approach for further developing and refining the evaluation.

4) Rate the overall significance and public health impact of this evaluation as low, moderate, or high.

5) Provide any other comments you feel NTP staff should consider in developing this evaluation.