NIEHS, National Toxicology Program NIOSH, Industrywide Studies Branch Interagency Agreement

Update on Current Research

Cheryl F. Estill for Elizabeth Whelan December 10, 2014

NTP and NIOSH: Common Goals

- To provide scientific data and knowledge necessary for making appropriate decisions that protect and improve public health.
- Establish and maintain partnerships with other federal agencies to leverage resources and reduce undue overlap

Goals of the NTP/NIOSH Collaboration

- Conduct exposure and health assessments of priority agents of mutual interest to NTP and NIOSH
- Capitalize on NIOSH access to human populations and work sites to provide real-world context for toxicology studies
- Guide decision-making for NIOSH epidemiologic studies
- Toxicology and epidemiology studies provide evidencebase for guidance documents
 - Report on Carcinogens, OHAT reviews, NIOSH Criteria Documents

Impact of the Collaboration

- Findings inform testing priorities (e.g., DTBBA, 2M4N)
- Guides selection of relevant laboratory test exposures and doses (e.g., metal working fluids)
- Has led to development of methods for generation of laboratory test exposures (e.g., welding fume, mold, asphalt fume)

Update of Current Studies

- Manganese Fractions In Welding Fume
- Carbon Nanotubes and Carbon Nanofibers
- Bisphenol A
- Coal Tar Pitch Volatiles Containing PAHs in Coal Tar Sealant Applications
- Flame Retardants

Occupational Exposure Assessment Of Manganese Fractions In Welding Fume

Kevin W. Hanley, MSPH, CIH

National Institute for Occupational Safety and Health Centers for Disease Control and Prevention

Occupational Exposure Assessment Of Manganese Fractions In Welding Fume, NTP funding FY09-11

- Objective: to characterize welders' exposures in multiple industries to 4 manganese fractions based on selective chemical solubility due to different Mn valence states
- NIOSH evaluated novel method for soluble Mn; Mn (0, 2+); Mn (3+, 4+); insoluble Mn; (& Mn-sum)
 - Successful transfer of sequential extraction method to contract lab
- Conducted 10 monitoring surveys
 - Construction at oil refineries, heavy equipment manufacturing, appliance manufacturing, shipyard, steel fabricators
- Over 300 full-shift worker-day breathing zone TWA measurements
 - Required > 650 personal samples; (x 5 = -3250 data pts.)

Occupational Exposure Assessment Of Manganese Fractions In Welding Fume

- 15 site reports sent to companies, unions
- Manuscript tentatively accepted, *J Occupational & Environmental Hygiene*
 - Refinery construction, stick welding
 - Welders' exposures > 10x new ACGIH TLV, respirable
 - Mn 0, 2+ slightly more prevalent than Mn 3+, 4+ which were much greater than soluble & insoluble Mn
- Additional manuscript internal review; target journal Annals of Occupational Hygiene
 - Heavy equipment manufacturing MIG welding
 - Mn 0, 2+ and Mn 3+, 4+ most abundant [~85% of Mn(sum)] in similar levels with each other and much greater than soluble & insoluble Mn
- Finalizing new method for sequential extraction, draft NIOSH Manual of Analytical Methods 7305 and draft manuscript

Industrywide Exposure Assessment Study of Workers Exposed to Carbon Nanotubes and Carbon Nanofibers

Matthew Dahm, MPH National Institute for Occupational Safety and Health Centers for Disease Control and Prevention

Carbon Nanotube Feasibility Study NTP Funding FY08-09

Objective:

- Enumerate workplaces, workers, and materials involved in engineered carbonaceous nanomaterial (ENM) production and use.
- Determine industrywide use of administrative and engineering controls to minimize exposure

Major findings:

- 70 ECN manufacturers, users, distributors above R&D scale (or within 5 years)
- Most frequently used ECN (~80%) were carbon nanotubes (CNT) and nanofibers (CNF)
- Total workforce size (as of 2009) was <1000, growing at 15% annually (22% for CNT)
- Companies reported high use of controls, which was verified in subsequent visits; use of good housekeeping methods to minimize dust was less prevalent.

Carbon Nanotubes (CNT)

Exposure Assessment, NTP Funding FY12 – FY14

• **Objective:** conduct exposure assessments for carbon nanotubes and carbon nanofibers (CNT/CNF) in a representative sample of US workplaces.

Conducted 19 Site Visits

- CNT/CNF Primary Manufacturers
- CNT/CNF Secondary Manufacturers (Electronics and Composites Facilities)
 - 128 Workers Sampled (2 days each)
 - 480 Full Shift, Personal Respirable and Inhalable Elemental Carbon Samples
 - 256 Full Shift, Personal Samples analyzed by TEM
 - ~ 105 Dermal Samples (currently being analyzed by SEM)
 - ~ 90 Sputum Samples (currently being analyzed by hyperspectral imaging)

Overall Personal Exposures

- Respirable- 0.34 µg/m^{3 -}
- NIOSH Recommended Exposure Limit (REL) = 1 μ g/m³
- Inhalable- 1.21 µg/m³

CNT Exposure Assessment Project NTP Funding FY12 – FY14

- 4% of respirable samples > REL.
- 30% of inhalable samples for EC (no REL) > 1 ug/m³.
- Manually sized the material as single fibers or agglomerates up to 10 um. We found very few single fibers and about 75% of the agglomerated materials were ~4um to 10um (the thoracic region). Unsure if there will be any adverse health outcomes from these larger materials.
- Exposure was highest to multiwall compared to single wall CNT
- When separated into the industry, composites industry had the highest exposures compared to producers or companies using the materials in electronics.

Carbon Nanotube Feasibility Study NTP Funding FY08-09

Impact

- IARC meeting of CNT carcinogenicity
- Nordic Expert Group for Criteria Documentation of Health Risks to develop OELs

• Publications:

- Schubauer-Berigan et al. Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics and feasibility of epidemiologic studies. J Occup Environ Med; 53(6 Suppl):S62-S67, 2011.
- Dahm et al. Exposure control strategies in the carbonaceous nanomaterial industry. *J Occup Environ Med* 53(6 Suppl):S68–S73, 2011.
- Schubauer-Berigan et al. Characterizing adoption of precautionary risk management guidance for nanomaterials, an emerging occupational hazard. *J Occup Environ Hyg* 2014, DOI: 10.1080/15459624.2014.946515

Manuscript Submitted to Journal

Dahm MM, et al. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14
Site Visits. Submitted to Annals of Occupational Hygiene

Occupational Exposure to Bisphenol A in the United States

Cynthia J. Hines, MS, CIH National Institute for Occupational Safety and Health Centers for Disease Control and Prevention

Occupational Exposure to BPA in the U.S. NTP Funding FY12-15

- Companies
 - Initial walk-around visit, n=9
 - Recruitment, n=6
 - ♦Sampling, n=6
 - Industries
 - BPA mfg.; polycarbonate, phenolic and epoxy resins, investment casting wax, and investment casting foundry

Workers

78 workers (154 worker-days)

Occupational Exposure to BPA in the U.S.

- Samples Per Person
 - 7 urine samples over two days (n=532)
 - 2 air samples over two days (n=153)
 - 2 hand wipe samples, day 2 only, pre- and end-shift (n=151)
- Analysis
 - Urine: Total & Free BPA completed for sites 1-4
 - Air and Hand Wipe: BPA completed for sites 1-5
- Next Steps
 - Complete sample analyses and database compilation
 - Data analysis, manuscript preparation, required reviews
 - Notify workers, companies, and unions of results

Assessment of exposure to coal tar pitch volatiles containing PAHs in coal tar sealant applications NTP Funding FY15-17, Donald Fleming CIH,

- USGS researchers have recently identified elevated levels of PAHs in coal tar sealants.
- A series of worksite surveys will be conducted during coal tar pavement sealant application jobs (e.g. parking lots) during FY15-17.
- Occupational exposures will be assessed by analysis of metabolites in biological samples, and of chemicals in dermal wipe samples and in personal air samples.
- Air samples will be analyzed for the following PAHs:
 - Coal tar pitch volatiles
 - Acenaphthene
 - Acenaphthalene
 - Anthracene
 - Benz(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene

- Benzo(a)pyrene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indenol(1,2,3-c,d)pyrene
- Naphthalene
- Phenanthrene
- Pyrene

Assessment of Occupational Exposure to Flame Retardants, NTP Funding FY15-17, Cheryl Estill

- Widely added to US products and are changing rapidly due to polybrominated diphyenyl ethers (PBDEs) phase-out
- Characterize routes of exposure and exposures in various industries
 - manufacture of products that use flexible polyurethane foams, plastics, or resins,
 - fabrication and manufacture of rigid polystyrene foam,
 - cutting, installing or spraying insulation at construction sites,
 - gymnasiums,
 - manufacture of wire harnesses or printed circuit boards, and
 - fire service
- Samples to collect from workers: urine, serum, air, hand wipe

Flame Retardants

- tetrabromobisphone A (TBBPA)
- 2,3,4,5 tetrabromobenzoate (TBB)
- 2,3,4,5 tetrabromophthalate (TBPH)
- decabromodiphenyl ethane (DBDPE)
- hexabromocyclododecane (HBCD)

- •tris (1,3-dichloro-2-propyl) phosphate (TDCPP)
- •tris (1-chloro-2-propyl) phosphate, (TCPP)
- tricresyl phosphate(TCP)
- •triphenyl phosphate (TPP)
- •PBDEs (BDE-28, -47, -66, -85, -99, -100, -153, -154, -183, Σpenta, -209)

Thank You

