DRAFT CONCEPT FOR LITERATURE-BASED ANALYSIS OF

MOUNTAINTOP REMOVAL MINING: IMPACTS ON HEALTH IN THE SURROUNDING COMMUNITY

November 9, 2015

Office of Health Assessment and Translation (OHAT)
Division of the National Toxicology Program
National Institute of Environmental Health Sciences
DRAFT CONCEPT FOR LITERATURE-BASED ANALYSIS OF MOUNTAINTOP REMOVAL MINING: IMPACTS ON HEALTH IN THE SURROUNDING COMMUNITY

Project Leader: Abee L. Boyles, Office of Health Assessment and Translation (OHAT), DNTP

Summary: OHAT is proposing to conduct an evaluation to identify potential impacts of mountaintop removal (MTR) mining on the health of people living in the surrounding communities and identify key research needs. Depending on the extent and nature of the literature available, level of evidence conclusions for hazard identification may be reached.

BACKGROUND AND RATIONALE

Since its introduction in the 1960s, mountaintop removal (MTR) mining is a major method of coal mining in and around Central Appalachia (including parts of Kentucky, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia) because it is typically faster, cheaper, and less labor intensive than underground mining (Holzman 2011). This mining method involves clearing the area of trees and topsoil and using explosives to blast apart the mountain rock to access coal seams (Palmer et al. 2010). The excess rock (i.e. mine spoil) is often pushed into adjacent streams (i.e. valley fill). The air, water, and soil in the surrounding area are impacted by these mining practices and have the potential to adversely impact human health and the environment (Simmons et al. 2008, Palmer et al. 2010, Acton et al. 2011). These exposures include particulate matter, polycyclic aromatic hydrocarbons, metals, and other potentially harmful substances (Palmer et al. 2010).

Several recent peer-reviewed papers have investigated rates of birth defects (Ahern et al. 2011, Lamm et al. 2015), cancer (Hendryx et al. 2012), cardiovascular disease (Esch and Hendryx 2011), hospitalization (Brink et al. 2014, Talbott et al. 2015), general quality of health (Zullig and Hendryx 2011, Woolley et al. 2015b), and mortality (Hendryx 2009, Woolley et al. 2015a) in communities affected by MTR mining – with varied results.

Overall Objective

The overall objective of this evaluation is to understand the human health impacts of MTR mining by conducting a systematic review of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies of exposures to MTR mining-related mixtures.

Considerations for Literature-Based Analyses

There are few studies of community health effects of MTR mining and those available are predominantly of limited size and scope. Thus, utilizing a comprehensive literature search including other types of data may inform interpretation of the community health studies. For example, recognizing issues such as differences in exposure, evaluating consistency of health outcomes identified in occupational studies with those identified in community studies might assist in assessing plausibility of causation.
Mountaintop Removal Mining: Impacts on Health in the Surrounding Community

- Observational epidemiology studies must properly account for all potential sources of confounding. Lower socioeconomic status, smoking, and reduced access to health care are all factors they may be associated with both the observed health effects and living near MTR mining. A systematic review including a transparent evaluation of confounding and other aspects of internal validity (risk of bias) will help document the relative strengths and weaknesses of each study’s design and conduct as well as identify areas for improvement in future research in this area.

- Experimental studies allow for a controlled exposure to mining-related mixtures to test biological hypotheses generated by human observational studies. When available, experimental animal and in vitro studies provide context for interpreting the human literature.

- Unlike relatively contained underground coal mining, MTR mining can expose the surrounding community to hazardous materials, particularly air particulate matter. Such complex mixture exposure scenarios include metals with other components of air particulate matter and selenium with other water pollutants (Palmer et al. 2010). Identifying risks from specific sources and their individual components is extremely difficult in observational epidemiological studies of communities. Most currently available studies consider residence near mining activities as a proxy for exposure. Studies that characterize exposures related to MTR mining (i.e. environmental monitoring) will be identified by the systematic review and summarized to provide context for the observed human health studies. Toxicity studies of individual components will not be included in the systematic review, but considered as relevant background material.

Utility of the Systematic Review

- A comprehensive approach will collect all published literature relevant to community health effects of mountaintop removal mining

- Critical appraisal of the risk of bias in these studies will identify ways to strengthen the design and conduct of future studies

- Integration across multiple evidence streams can help prioritize areas for future research
PROPOSED LITERATURE-BASED ANALYSIS

Systematic review of community health effects of mountaintop removal (MTR) mining

1. Identify literature reporting the effects of exposure to MTR or other coal mining practices in Appalachia, including other forms of surface mining, in human, experimental animal, and in vitro model systems (see Appendix I literature search strategy).

2. Extract data on potential health effects from relevant studies.

3. Assess the internal validity (risk of bias) of individual studies.

4. Summarize the extent and types of evidence available.

The following steps will depend on the extent and nature of the available evidence (i.e., number and similarity of studies):

5. Synthesize the evidence, including meta-analyses if appropriate, considering limitations on data integrating such as study design heterogeneity. Conduct sensitivity analyses to consider variation in community/occupational, MTR/unspecified mining, and pre-1980/post-1990 effect estimates.

6. Rate confidence in the body of evidence for human and animal studies separately according to one of four statements: High, Moderate, Low, or Very Low/No Evidence Available.

7. Translate confidence ratings into level of evidence of health effects for human and animal studies separately according to one of four statements: High, Moderate, Low, or Inadequate.

8. Combine the level of evidence ratings for human and animal data and consider the degree of support from mechanistic data to reach one of five possible hazard identification conclusions: Known, Presumed, Suspected, Not classifiable, or Not identified to be a hazard to humans.

A protocol for these steps using the OHAT Approach for Systematic Review and Evidence Integration will be developed based on the Handbook for Conducting Literature-Based Health Assessments (Rooney et al. 2014, NTP 2015).

1 Limited to experimental studies of mountaintop removal mining-related mixtures, not individual components.
To address our overall objective we developed PECO (Population, Exposure, Comparators and Outcomes) statements. The PECO statement is used as an aid to develop the specific research questions, search terms, and inclusion/exclusion criteria for the systematic review (Higgins and Green 2011).

<table>
<thead>
<tr>
<th>Table 1. PECO (Population, Exposure, Comparator and Outcome) Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECO Element</td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Exposure</td>
</tr>
<tr>
<td>Comparators</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
</tbody>
</table>
REFERENCES

Mountaintop Removal Mining: Impacts on Health in the Surrounding Community

APPENDIX I. MOUNTAINTOP REMOVAL MINING SEARCH TERMS

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mountaintop Mining</th>
<th>Appalachia Coal Mining</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(mountaintop OR 'mountain top'):ab,ti AND (anthracite OR bituminous OR coal OR mine OR mines OR mining OR removal):ab,ti

= 47

| | ((Appalachian Region OR Appalachia*:ti,ab OR Kentucky OR Ohio OR Pennsylvania OR Tennessee OR Virginia OR "West Virginia")::ti,ab AND coal mining/exp)

OR ((Appalachia*:ti,ab OR Kentucky:ti,ab OR Ohio:ti,ab OR Pennsylvania:ti,ab OR Tennessee:ti,ab OR Virginia:ti,ab OR "West Virginia":ti,ab)

AND (anthracite:ti,ab OR bituminous:ti,ab OR coal:ti,ab OR removal:ti,ab OR mining:ti,ab OR mines:ti,ab OR "West Virginia":ti,ab))

= 357

| PsycINFO | (mountaintop OR "mountain top") AND (anthracite OR bituminous OR coal OR mine OR mines OR mining OR removal) =12

| | (Appalachia*:ti,ab OR Kentucky*:ti,ab OR Ohio*:ti,ab OR Pennsylvania*:ti,ab OR Tennessee*:ti,ab OR Virginia*:ti,ab OR "West Virginia":ti,ab)

AND (anthracite:ti,ab OR bituminous:ti,ab OR coal:ti,ab OR mining:ti,ab))

= 310

| PubMed |

((mountaintop OR "mountain top") AND (anthracite OR bituminous OR coal OR mine OR mines OR mining OR removal)) = 39

AND (anthracite*[tiab] OR bituminous*[tiab] OR coal*[tiab] OR mining*[tiab])

AND (mine OR mines OR mining)) = 59

| | = 329

| Scopus | TITLE-ABS((mountaintop OR "mountain top") W/6 (anthracite OR bituminous OR coal OR mine OR mines OR mining OR removal)) =178

| | TITLE-ABS((Appalachia* OR Kentucky OR Ohio OR Pennsylvania OR Tennessee OR Virginia OR "West Virginia") AND

(anthracite OR bituminous OR coal) AND (mine OR mines OR mining)) =1646

| | = 1824

| Toxline |

(mountaintop OR "mountain top") AND (anthracite OR bituminous OR coal OR mine OR mines OR mining OR removal) =9 (excl. PubMed records)

| | ((Appalachia* OR Kentucky OR Ohio OR Pennsylvania OR Tennessee OR Virginia OR "West Virginia")

AND (anthracite OR bituminous OR coal) AND (mine OR mines OR mining)) = 742 (excl. PubMed records)

| | = 751

| Web of Science| TS=((mountaintop OR "mountain top") NEAR/6 (anthracite OR

OR Ohio OR Pennsylvania OR Tennessee)

= 953
Mountaintop Removal Mining: Impacts on Health in the Surrounding Community

<table>
<thead>
<tr>
<th>Mountaintop Mining</th>
<th>Appalachia Coal Mining</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bituminous OR coal OR mine OR mines OR mining OR removal)) AND (anthracite OR bituminous OR coal) AND (mine OR mines OR mining)) =134</td>
<td>OR Virginia OR "West Virginia") AND (anthracite OR bituminous OR coal) AND (mine OR mines OR mining)) =819</td>
<td>4285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBTOTAL REFS</th>
<th>DUPLICATES</th>
<th>TOTAL REFS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1302)</td>
<td>2983</td>
</tr>
</tbody>
</table>

- “Mountaintop” terms identified studies that specified mountaintop removal within the citation. Because MTR mining is currently the predominant form of coal mining in the Appalachian Region of the US, the addition of “Appalachia” terms was necessary to capture studies that did not specify mountaintop mining.

- Terms for other “open” mining practices (e.g. strip mining) were also considered to identify potentially relevant studies, but these results predominantly included coal mining in regions where MTR mining is not allowed and mining of things other than coal. Due to a significant increase in the number of references retrieved and limited utility of the majority of these studies, these terms are not included in the proposed literature search strategy.

- When the systematic review is conducted, the reference lists of included studies and relevant reviews will be searched for additional relevant publications.

- The list of included (and excluded) studies will also be posted on the OHAT website prior to release of a draft report as an additional strategy to identify potentially relevant studies that may have been missed during the literature search.