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INTRODUCTION 

Background 
The National Institutes of Health (NIH) defines epigenetics as “the study of changes in the regulation of 
gene activity and expression that are not dependent on gene sequence” (NIH 2009, Project 2010). There 
is great interest in understanding how genome-wide chemical modifications to DNA may regulate gene 
activity without altering the DNA sequence itself and what role these modifications may play in health 
and disease, including: cancer, autoimmune disease, mental disorders, and diabetes, among other 
illnesses (NIH 2014). NIH is a major sponsor of epigenetics research, spending over $700 million on 
epigenetics in 2012 (Burris and Baccarelli 2014).  

The National Institute of Environmental Health Science (NIEHS) is interested in understanding the effects 
of the environment on the epigenetic regulation of biological and pathological processes (NIEHS 2012).1 

A wide array of environmental factors has been reported to cause disruption to the epigenome, 
including: diet and nutrition, stress, and chemical and pharmaceutical exposures. Epigenetic 
modifications are thought to be a key mechanism behind the growing literature demonstrating 
developmental programing and transgenerational inheritance of health effects related to environmental 
exposures (Aiken and Ozanne 2014). 

In 2012, NIEHS spent 7.1% of its total budget on environmental epigenetics research (Burris and 
Baccarelli 2014). In order to assess the impact of this research commitment, methods are needed to 
systematically identify the relevant literature so that we can begin the process of translating findings 
from individual studies into knowledge based on synthesizing critical findings across epigenetic studies. 
A systematic review of the evidence for “environmental influences on the epigenome” would be a 
challenge given the size of the literature to date, estimated at greater than 100,000 records (Table 1). 
Part of the complexity of identifying the relevant literature arises from the term epigenetics, the 
definition of which is still debated (Ledford 2008). Depending on which definition is used, the term 
epigenetics can encompass many different molecular modifications/mechanisms, for example, 
alterations in DNA methylation, histone modifications, microRNA expression, or other newer molecular 
modifications that are still being described.  

One way to begin to investigate such a large and complex literature is to use text-mining algorithms and 
machine learning approaches to identify and characterize the type of research being conducted. Text 
mining and machine learning add meaning to text that is retrieved, extracted, and mined in an 
automated fashion (Ananiadou et al. 2006). In systematic review, this type of analysis is usually 
published as a scoping report to either show trends in research or identify targeted questions to address 
in future systematic reviews (Levac et al. 2010, Colquhoun et al. 2014, Wilson 2014). 

Objective and Specific Aims 
The overall objective of this scoping report is to identify published findings relevant to understanding 
the extent of the evidence linking environmental exposures to health outcomes via genome-wide 
alterations in DNA methylation.  

1 Goal 1 of the NIEHS 2012-2017 Strategic Plan was to “identify and understand fundamental shared mechanisms 
of common biological pathways, e.g., inflammation, epigenetic changes, oxidative stress, mutagenesis, etc., 
underlying a broad range of complex disease, in order to enable the development of applicable prevention and 
intervention strategies.” Specifically, goal 1b was to “investigate the effects of the environment on the epigenetic 
regulation of biological and pathological processes.” 

                                                      



Specific aims 

1) Search the published literature (PubMed) for research that has used genome-wide analyses of DNA 
methylation;  

2) Use topic-modeling capabilities of SWIFT (Sciome Workbench for Interactive, Computer-Facilitated 
Text-mining) to identify relevant literature;  

3) Use the machine-learning capabilities of SWIFT to rank the search results based on relevance to the 
objective question;  

4) Use the text-mining and machine-learning capabilities of SWIFT to categorize records by type of 
exposure, health outcome, and evidence stream (human, animal, in vitro); and  

5) Use SWIFT to visualize and summarize the results of the relevancy ranking and categorization of the 
studies.  

The overall objective and specific aims were based on a series of problem formulation steps that 
included assembling an NIEHS cross-divisional evaluation team with expertise in epigenetics, 
environmental health, text-mining/machine-learning software, systematic review, and information 
science. This scoping report can be used to identify and prioritize topic areas for future research and 
serve as a proof-of-concept analysis to evaluate the feasibility and reliability of using text 
mining/machine learning to evaluate large and complex literature bases. 

METHODS 

Problem Formulation 
Understanding the role of the environment on altering the epigenetic state was identified as a primary 
goal of the NIEHS in the 2012-2017 Strategic Plan. Specifically, goal 1b was to “investigate the effects of 
the environment on the epigenetic regulation of biological and pathological processes.” A cross-
divisional implementation planning committee was formed within NIEHS to discuss how to execute this 
goal. The committee asked the Office of Health Assessment and Translation (OHAT) to assist in 
identifying literature that provides improved clarity on the extent of the evidence linking exposures to 
health outcomes via epigenetic mechanisms and ultimately to identify research areas where epigenetics 
links are the strongest. An evaluation team was subsequently formed with expertise in epigenetics, 
environmental health, text-mining/machine-learning software, systematic review, and information 
science. 

Preliminary search of the literature and prioritization of genome-wide studies 

Initial literature search strategies were developed for PubMed in July 2013 to identify all types of 
epigenetic studies (“gene-by-gene” as well as genome-wide) using a wide number of terms and concepts 
related to epigenetics, including DNA methylation, histone modifications, and microRNA signaling. The 
epigenetics search strategy was crossed with a search strategy designed to capture a broad range of 
environmental exposures or one targeted on selected exposures (air pollution, endocrine disruptors, 
heavy metals, flame retardants, pesticides, and phthalates). The resulting size of the queries is outlined 
below in Table 1 and specific search terminology can be found in Supplemental Materials (Table S1). The 
number of search results was >100,000 records when the broadest search strategy was used 
(epigenetics + environmental exposures) and ~4,500 for a focused search on DNA methylation + selected 
exposures.  

 



Table 1. Exploratory PubMed Searches 
 # Records 

Search Strategies Retrieved 
1 Epigenetics + Environmental Exposures 107,647 

2 Epigenetics + Selected Exposures (air pollution, endocrine disruptors, heavy 
metals, flame retardants, pesticides, phthalates) 26,631 

3 DNA methylation + Exposure 19,558 

4 DNA methylation + Selected Exposures (air pollution, endocrine disruptors, 
heavy metals, flame retardants, pesticides, phthalates) 4,472 

 

Given the size of the literature base, a decision was made by the evaluation team to prioritize the focus 
on DNA methylation because most research investments to date have been focused on understanding 
environmental effects on this specific type of epigenetic modification (Burris and Baccarelli 2014). The 
focus of the evaluation was further prioritized to studies of mammalian systems that used genome-wide 
analyses of DNA methylation, rather than gene-by-gene analyses, as this seems to be where the future 
of this research lies.  

Identifying Relevant Studies  

Literature search strategy 

A literature search strategy (Table S2) was developed to query PubMed to focus specifically on records 
that used genome-wide DNA methylation analyses. Genome-wide techniques were identified based on 
input from scientists with expertise in DNA methylation techniques and by consulting a recent review of 
DNA methylation analysis techniques (Laird 2010). The search was designed to be broad in order to 
capture the most relevant records regardless of the terminology used. The search strings were written 
to capture the concepts of “global DNA methylation,” “DNA methylation”, “genome-wide,” “genome-
wide techniques,” and “epigenetics”. These concepts were then combined in a stepwise manner 
resulting in the following query: “(Epigenetics AND (genome-wide OR genome-wide techniques)) OR 
Global DNA methylation OR (DNA methylation AND genome wide) OR (DNA methylation AND genome-
wide techniques).” No limitations were imposed on publication year, evidence stream (i.e., human, 
animal, in vitro), type of health outcome evaluated, or type of exposure (or lack thereof). This search 
was run in PubMed on February 25, 2015 and retrieved 35,536 records.  

There were several challenges encountered when designing this literature search strategy. First, the 
terms “genome-wide”, “whole-genome”, and “global” have been used interchangeably and imprecisely 
over time (e.g. “global” has been used to refer to analyses of repetitive sequence elements as well as 
locus specific analyses in some instances). Second, these terms are also descriptive of other types of 
molecular biology analyses such as measuring RNA or micro-RNA transcription or histone modifications. 
Third, the PubMed database is unable to search for concepts or keywords that are separated by 
intervening words (e.g. “DNA-methylation immunoprecipitation followed by microarray analysis”). 



Text mining to prioritize search results 

The flow of records through the SWIFT software tool indicating how records were processed and the 
number of records evaluated at each step is shown in Figure 1. The retrieved records (n=35,119)2 were 
uploaded into SWIFT and a series of queries was constructed to further refine the focus on identifying 
original research papers that used genome-wide technologies in model systems most applicable for 
human health. First, a query utilizing key words and machine learning was performed to tag and remove 
reviews, commentaries, editorials and other types of non-research article records. These queries used 
machine learning to discern what features research articles have compared to non-research articles and 
from this a fingerprint for “non-research articles” was created. The records were then assessed for their 
degree of similarity to the “non-research article” fingerprint. Next, research articles published prior to 
1999 were removed because genome-wide techniques of interest were not developed prior to that time. 
Finally, in order to eliminate non-animal organisms (plants, fungi, viruses, etc.), records were restricted 
to having an ‘animal’ MeSH organism tag.  

After these refinements, the topic-modeling functionality of SWIFT was used to survey topics in order to 
identify pockets of relevant and irrelevant literature. Topic modeling uses a generative Latent Dirichlet 
Allocation (LDA) model to probabilistically assign records based on the words they contain to topics (Blei 
et al. 2003, Blei and Lafferty 2009). The resulting topics, which are summarized by their most frequently 
used words, often have intuitive meanings (Figure 2). In this case, the topic modeling was used to 
identify “seed records” for the next step, which is training the machine-learning algorithm for relevancy 
ranking where the records are ranked from most relevant to the objective question (top of list) to least 
relevant to the objective question (bottom of list).  

Training sets (also referred to as “seed sets”) of 60 “positive” and 67 “negative” records were created by 
skimming the titles and abstracts of records contained within the topic model clusters. Positive records 
were confirmed to have at least one genome-wide DNA methylation analysis. Negative records did not 
have genome-wide analyses of DNA methylation, but may have had genome-wide analyses of mRNA or 
miRNA. Other records that used “global” analyses of DNA methylation, including those for multiple DNA 
repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE) were 
marked as negative seed records since repetitive elements were not the focus of this review. The 
remaining literature set (21,221 records) was relevancy ranked based on these training sets. 

Categorizing search results 
The top 25% of relevancy ranked records (n=5,306) were then tagged by health outcome, evidence 
stream, and exposure. The tags for evidence stream and exposure were based on targeted batch queries 
based on MeSH headings and title and abstract key words. Health-outcome tagging was performed 
using machine learning within SWIFT. For each top-level MeSH disease and mental disorder code, 5,000 
records were selected at random from PubMed, and used as a training set to develop a classifier for the 
corresponding codes. Based on the output of the resulting set of classifiers, a given record can be 
assigned to multiple codes, and within each code, matching records are ranked according to the 
strength of the association 

2 There can be small differences between the downloadable version of PubMed used by SWIFT and the 
records available online. The missing PMIDs were absent in the downloadable PubMed database at the 
time the records were imported into SWIFT. For example records that were “e-published” ahead of their 
true publication date may not have been available for import into SWIFT.  

                                                      



RESULTS 

Identifying the most relevant records 
The PubMed literature search for records that used genome-wide DNA methylation analyses retrieved 
35,119 records available for export to SWIFT. Filters to remove non-research articles such as reviews and 
commentaries, records published before 1999, and studies in plants, fungi, and viruses resulted in 
21,221 records available for relevancy ranking. A training set of 60 positive and 67 negative records was 
used to rank the 21,221 records and the top 25% (n=5,306) were selected as most likely relevant and 
used for subsequent analysis (Figure 1). 

Ranking performance was assessed by evaluating the lowest and highest ranked records and 
determining if each was relevant to the objective question. None of the 50 lowest ranked records were 
relevant to the question of “What is the extent of the evidence linking environmental exposures to 
health outcomes via genome-wide alterations in DNA methylation?” therefore the ranking of these at 
the bottom of the list was appropriate. Of the 50 highest ranked records, 18 were directly relevant to 
the objective question since they evaluated environmental exposures leading to altered DNA 
methylation that was evaluated on a genome-wide scale. The remaining 32 records all pertained to DNA 
methylation analyses, but 26 of these were not genome-wide analyses, 3 were methods papers and 
therefore lacked the exposure component, and 3 evaluated DNA methylation in non-mammalian 
systems. An additional 100 records were chosen using a random number generator and evaluated to 
calculate the predicted ranking performance, which is shown in Figure 3. This analysis suggests that at 
least 80% of all relevant records are expected to occur within the top 25% of records (i.e. recall is 
predicted to be >80% when the top 25% of ranked records are evaluated) (Figure 3).  

The results of the filters and relevancy ranking are presented in word clouds that show the most 
overrepresented terms in a specified set of records (Figure 4). The size of the words is proportional to 
the word frequency and inversely proportional to the number of records containing that word (Manning 
et al. 2008). The word cloud from the unfiltered and unranked set of 35,119 records (Figure 4A) 
prominently exhibits many “off-topic” words such as histones, chromatin, and small interfering RNA. 
This is not unexpected as the literature search strategy was concept-based and these concepts can be 
applied to many different biological processes other than just DNA methylation. In comparison, more 
specific words such as DNA, methyl, and CpG are prominent in the word cloud from the top 25% of 
ranked records (Figure 4B). The side-by-side comparison of these two word clouds provides one way to 
visually assess the enrichment for relevant records that was achieved using SWIFT.  

Categorization of relevancy ranked results 
SWIFT was used to categorize the top 25% of relevancy ranked records (n = 5,306) by type of health 
outcome, evidence stream, and exposure. All of the records could be categorized based on health 
outcome or evidence stream. Only 21% (n=1130) of the top 25% ranked records were associated with an 
exposure. It is important to note that records can map to more than one category for any given 
categorization scheme. For example, see below.  

The neoplasms category was the largest health-outcome category containing 3,391 records (Figure 5). 
The second and third largest categories were digestive system diseases (n=1,524) and female urogenital 
diseases (n=787), respectively. Over half of the records were associated with a human evidence stream 
(Figure 6). Approximately 24% of the records were associated with in vitro and 15% associated with the 
animal evidence stream. The largest category of exposure (Figure 7) was “general environment” and 
contained general terms such as “environmental pollutant”, “endocrine disruptor”, “hazardous 



substances”, and “water pollutant”. The second largest category was diet and nutrition. Several (207 of 
742) of the records that mapped to “general environment” also mapped to the more specific exposure 
categories because the titles and/or abstracts from these records contained both the specific and non-
specific exposure terms. The second largest category was “diet and nutrition” which contained 212 
records.  

A key feature of SWIFT is that it allows the user to explore how various categories overlap by using 
Boolean operators to intersect selected categories. As an example, Figure 8 shows how the health 
outcome categorization changes when exploring two different exposure categories. There were 26 
records associated with pesticide exposure and these were primarily related to endocrine system 
diseases, female urogenital disease and neoplasm categories. In comparison, there were 41 records 
tagged with stress as an exposure. The largest health outcomes associated with stress were anxiety 
disorders, and nervous system diseases. An alternative way of displaying how the exposure and health 
outcome categories intersect is provided in the heat map in Figure 9. The heat map shows the 
intersection of the exposure categories on the horizontal axis and the health-outcome categories on the 
vertical axis and the number of records in each exposure/health-outcome intersection are indicated. The 
largest pockets of literature are colored red, small pockets are colored blue, and pockets with no 
literature are colored white.  

DISCUSSION 

The current text-mining analysis focuses on genome-wide studies of DNA methylation and can be 
considered a proof-of-concept analysis for ways to use advances in text mining and machine learning to 
prioritize and categorize large and complex literature bases. A potential future project is to apply these 
approaches to the much larger literature base of gene-by-gene studies as well as other types of 
epigenetic modifications in addition to DNA methylation.  

In the current work, we used SWIFT to first remove “out-of-scope” records (non-research articles, those 
published prior to 1999, and non-animal records). We then used topic modeling to explore pockets of 
literature that were relevant or irrelevant to the objective question. While exploring the topics, a 
training set containing positive and negative seed records was created which was subsequently used to 
train the program to relevancy rank the remaining 21,221 records. The top 25% of ranked records were 
then categorized by health outcome, evidence stream, and exposure.  

SWIFT was a useful tool in regards to both prioritization and categorization of the records based on 
health outcome, evidence stream and exposure. A current limitation and area of active methods 
development, however, is the lack of precision that is observed even in the top ranked records. That is, 
at this point not all of the records in the top 25% or ranked records are actually relevant to the objective 
question (the ranking procedure has good recall performance but the precision is unknown). One 
improvement could be to construct a more specific literature search; however this could reduce the 
recall of relevant records. Another approach is to improve the seed record selection and/or to use 
iterative training and limited screening in order to increase the precision while also maintaining high 
recall.  

Many advances have been made in text-mining and machine-learning approaches to exploring large 
literature databases and these approaches may be the most efficient way to summarize the state of 
science for a research area as broad as epigenetics (Blei and Lafferty 2009, Thomas et al. 2011, Mimno 
2012, Miwa et al. 2012, BioCreativeIV 2013, Miwa et al. 2014, Shemilt et al. 2014, O'Mara-Eves et al. 



2015). The use of text mining tools to identify and assist researchers in identifying records for inclusion 
during the screening phase of systematic review is an area of active development and results have been 
promising so far (O'Mara-Eves et al. 2015). Text-mining tools, when used for prioritizing the order of 
record screening, seems to be a safe use of the technology and can potentially reduce the time burden 
associated with screening. A recent review on the use of text mining in systematic review found that 
most papers suggested a saving in workload between 30% and 70% might be possible although the 
saving in workload would be accompanied by some loss of relevant records, i.e., a 95% recall rate at 
meaningful workload reduction rates (O'Mara-Eves et al. 2015).  

SWIFT incorporates state of the art information retrieval approaches including search, topic modeling 
and supervised classification into an interactive, integrated workbench. Although classification methods 
have previously been shown to be helpful in the context of systematic review (e.g. Abstrackr, 
GAPScreener, EPPI-Reviewer), SWIFT’s interactive approach and exploratory nature may make it more 
useful than related tools for the purpose of preparing scoping reviews and during the problem 
formulation steps undertaken during full systematic reviews (Yu et al. 2008, Thomas et al. 2010, Wallace 
et al. 2012). At this time, we are testing the incorporation of a modified approach where text mining, 
machine learning and expert screening will be used in an iterative fashion to improve both precision and 
recall, while reducing the screening burden such that accurate and comprehensive scoping reports can 
be produced in the most efficient manner. Future developments also include full-text searching, 
extracting data/language from tables and graphs, collating gene and protein names within a record, and 
developing metrics to evaluate research trends over time. 

  



Figure 1. Study flow diagram 

 
 
Study flow diagram indicating how records were processed and the number of records evaluated at each 
step. 

  



Figure 2. Topic modeling 

 

Topic modeling uses a generative Latent Dirichlet Allocation (LDA) model to probabilistically assign 
records based on the words they contain to topics. The machine-learning algorithms within SWIFT 
automatically populate 50 topics for a given project. The topics are summarized by their most frequently 
used words. The “Topic Number” has no relevance. In this figure topics are listed according to how many 
records are in each topic. Records can occur in more than one topic. Red stars and X’s indicate topics 
that more or less likely, respectively, to contain records relevant to the objective question. Various 
topics were explored to identify positive and negative seed records to be used for training the 
relevancy-ranking algorithm.  



Figure 3. Predicted ranking performance 

 
Ranking performance was predicted based on evaluating 200 records (of 21,221 possible). The black 
dotted line suggests that as more records are examined, then the larger the percentage of relevant 
records would be captured. The orange vertical line indicates that once 25% of records are evaluated, 
you are likely to have captured 80% of the relevant records.   



Figure 4. Word clouds indicating overrepresented terms 

 

 

A 

B 

 
Word clouds indicate overrepresented words within a literature set. Word clouds from the (A) original, 
unfiltered search resulting in 35,119 records and (B) the top 25% ranked records are shown demonstrate 
an enrichment of relevant terms after filtering and ranking. Letters in parenthesis indicate where the 
word occurs: (T) title, (A) abstract, (M) MeSH (S) MeSH Supplementary Chemical. The size of the words is 
proportional to the word frequency and inversely proportional to the number of records containing that 
word.   



Figure 5. Categorization by health outcome 

 
Categorization of the top 25% of ranked records based on health outcome. Health-outcome tagging was 
performed using machine learning within SWIFT where fingerprints for the top level MeSH disease and 
mental disorder codes were previously developed based on a random sampling of 5,000 records from 
each code. In order for a record to map to a given health outcome, it must match a pre-determined 
number of words in the health-outcome fingerprint.  



Figure 6. Categorization by evidence stream 

 
Categorization of the top 25% of ranked records based on evidence stream. Evidence stream was 
determined using a text-word search (see Supplemental Materials for more information).   



Figure 7. Categorization of exposure 

 
Categorization of the top 25% of ranked records based on exposure. Exposure was determined using a 
text-word search (see Supplemental Materials for more information). Only 1130 of 5306 records were 
associated with an exposure.  



Figure 8. Intersection of exposure and health-outcome categories 

 
Various exposure categories were selected and the numbers of records associated with each exposure 
are shown in parenthesis. Each exposure category was then intersected with the health-outcome 
categories.  



Figure 9. Intersection of exposure and health-outcome categories 

  



The heat map shows the intersection of the exposure categories on the horizontal axis and the health-outcome categories on the vertical axis and the number of 
records in each exposure/health-outcome intersection are indicated. The largest pockets of literature are colored red, small pockets are colored blue, and 
pockets with no literature are colored white. 
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