Glyphosate Research Scoping

Stephanie L. Smith-Roe, Ph.D.
Biomolecular Screening Branch
National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors Meeting
June 15 – 16, 2016
A heavily used herbicide

- High production herbicide registered in 130 countries, manufactured by at least 91 producers in 20 countries
 - > 1.7 million tons applied in USA from 1974 – 2014 (~90% for agriculture)
 - Total global use ~ 9.4 million tons from 1974 – 2014
 - More than 750 products containing glyphosate are available in USA alone

- Post-emergent, systemic, non-selective herbicide by targeting an amino acid synthesis pathway that is present in plants and bacteria but not in mammals

- Applied as a mixture of glyphosate and spray adjuvants to improve delivery of glyphosate to plants

- General population exposed through diet & use of consumer products

Glyphosate

\[\text{HO} \quad \text{CH}_2 \quad \text{N} \quad \text{H}_2\text{C} \quad \text{P} \quad \text{OH} \quad \text{OH} \]

CASRN 1071-83-6
Toxicity Report No. 16: 13-week study with glyphosate in feed (1992)

- Nominated by California Regional Water Quality Control Board North Coast Region (1981)
- NTP selected glyphosate for toxicity evaluation because of:
 - Expanding use
 - Potential for human exposure
 - The lack of published reports concerning comprehensive toxicity or carcinogenicity evaluations
Toxicity Report No. 16: 13-week study with glyphosate in feed (1992)

• Top dose for rats \(\sim 3,400 \text{ mg/kg/day} \) (males & females)
 – No gross lesions at necropsy

• Top dose for mice \(\sim 10,800 \) and \(\sim 12,000 \text{ mg/kg/day} \) (males & females, respectively)
 – No gross lesions at necropsy

• Micronucleus assay was negative in male and female mice (also 13-week exposure via feed)

• Bacterial mutagenicity tests were negative

• ADME studies indicated low absorption and rapid elimination
Is glyphosate a carcinogenic risk for humans?

Current assessments

IARC Monograph 112: Glyphosate is “probably carcinogenic to humans”

2015

Joint FAO/WHO Meeting on Pesticide Residues (JMPR): Glyphosate is “unlikely to pose a carcinogenic risk to humans via exposure from the diet”

2016

European Food Safety Agency (EFSA): Glyphosate is “unlikely to pose a carcinogenic hazard to humans”

US EPA: Completing a new risk assessment for re-registration of glyphosate; prior classification “evidence of non-carcinogenicity for humans”

In progress…
Different analyses for different purposes

Key differences

• Hazard identification versus risk assessment
 – IARC evaluates whether a chemical is a cancer hazard
 – JMPR evaluates potential cancer risk from dietary exposure
 – EPA and EFSA perform mandated, comprehensive risk assessments with cancer as one of many endpoints

• Access to unpublished, industry-funded guideline studies that are part of pesticide registration packages is limited
 – EPA, EFSA, & JMPR have greater access to unpublished studies

• Active ingredient versus glyphosate formulations
 – IARC included glyphosate formulations in evaluation
Objectives

- Compare toxicity of glyphosate versus formulations (and formulations vs. formulations)
- Provide publicly available toxicology data on cancer-related endpoints
- Provide publicly available toxicology data on non-cancer endpoints
- Investigate mechanisms of how glyphosate and formulations cause toxic effects
Toxicity of glyphosate vs. formulations

What is the role of glyphosate in the toxicity of formulations?

- Are all formulations equally toxic?
- What drives the toxicity of formulations?

Human hepatoma cells (HepG2)
24 h incubation

Luminescence vs. Glyphosate (µM)

- 1.9% (0.12 M)
- 1.0% (0.06 M)
- 41% (2.40 M) A
- 41% (2.40 M) B
- 18% (1.10 M)
Objectives

• Compare toxicity of glyphosate versus formulations (and formulations vs. formulations)

• Provide publicly available toxicology data on cancer-related endpoints

• Provide publicly available toxicology data on non-cancer endpoints

• Investigate mechanisms of how glyphosate and formulations cause toxic effects
Cancer-related endpoints

10 Key Characteristics of Carcinogens

- Act as an electrophile either directly or after metabolic activation
- Genotoxicity
- Alter DNA repair or cause genomic instability
- Induce epigenetic alterations
- Induce oxidative stress
- Induce chronic inflammation
- Be immunosuppressive
- Modulate receptor-mediated effects
- Cause immortalization
- Alter cell proliferation, cell death, or nutrient supply

Smith et al. (2016) Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. *EHP.*124(6): 713-21
Cancer-related endpoints

10 Key Characteristics of Carcinogens

- Act as an electrophile either directly or after metabolic activation
- Genotoxicity
 - Alter DNA repair or cause genomic instability
 - Induce epigenetic alterations
 - Induce oxidative stress
- Induce chronic inflammation
- Be immunosuppressive
- Modulate receptor-mediated effects
- Cause immortalization
- Alter cell proliferation, cell death, or nutrient supply

Smith et al. (2016) Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. EHP.124(6): 713-21
Objectives

- Compare toxicity of glyphosate versus formulations (and formulations vs. formulations)
- Provide publicly available toxicology data on cancer-related endpoints
- Provide publicly available toxicology data on non-cancer endpoints
- Investigate mechanisms of how glyphosate and formulations cause toxic effects

NTP Research Program
Non-cancer related endpoints

- Screening-level analysis of literature using SWIFT
 - Sciome Workbench for Interactive, Computer-Facilitated Text-mining (SWIFT) software
 - Identify and rank research that is most relevant to questions
 - Categorize by exposure, outcome, and evidence stream
 - Visualize and summarize

- Describe evidence base for health outcomes investigated in connection to glyphosate exposure (and by definition also what has not been investigated)

Objectives

- Compare toxicity of glyphosate versus formulations (and formulations vs. formulations)
- Provide publicly available toxicology data on cancer-related endpoints
- Provide publicly available toxicology data on non-cancer endpoints
- Investigate mechanisms of how glyphosate and formulations cause toxic effects
Approach – rapid screening & short-term *in vivo* tests

Rapid screening of glyphosate & formulations

Short term *in vivo* testing:
- Guideline genotoxicity assays
- Gene expression assays
- Assays for oxidative stress

Robust dose-response data to aid risk assessment
Objectives

• Tailor research program to match decision-making time frame
• Comment on the relevancy of the proposed activity relative to the mission and goals of the NTP.

 – The NTP’s stated goals are to: Provide information on potentially hazardous substances to all stakeholders; Develop and validate improved testing methods; Strengthen the science base in toxicology; Coordinate toxicology testing programs across DHHS (http://ntp.niehs.nih.gov/go/about).

• Comment on whether the steps outlined in the presentation to formulate the research problem and for gathering input are appropriate.

• Provide any other comments e.g. on rationale, scope, significance that you feel NTP staff should consider in developing this activity.