

# NTP Approaches to Assessment of Dermal Hypersensitivity

### Dori R. Germolec, Ph.D. Toxicology Branch NIEHS, DNTP

**Board of Scientific Counselors Meeting** 

December 7-8, 2017





"Allergic Contact Dermatitis"



Accounts for 10-15% of all occupational disease (Anderson et al. 2010)

Major testing requirement for cosmetics, pesticides, industrial chemicals, etc.



### **Skin Sensitization Process**



<sup>\*</sup>Illustration by D. Sailstad



#### In Vivo Tests for Assessment of Dermal Sensitization



### Guinea Pig MaximizationTest

- Intradermal and topical sensitization
- Topical challenge
- Measure erythema response 24 - 48 hours post challenge

# Buehler

- Topical sensitization with closed patch
- Topical challenge distal to sensitization with closed patch
- Measure erythema response following removal of patch



### Local Lymph Node Assay

- Topical treatment on dorsal surface of the ear
- Inject with radiolabel or fluorochrome
- Measure cell proliferation in the lymph nodes associated with the site of application

### **U.S. Regulatory Requirements/Considerations**







Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). 1999. NIH Publication No. 99-4494 ICCVAM. 2010. NIH Publication No. 11-7709 Urbisch et al. 2015. Reg Tox Pharm 71:337-351. Hoffmann et al. 2017 in preparation



## **Reproducibility of LLNA Data**

|                   | Contents lists available at ScienceDirect              | Toxicology<br>in Vitro |
|-------------------|--------------------------------------------------------|------------------------|
|                   | Toxicology in Vitro                                    |                        |
| CICEVIED          | journal homepage: www.elsevier.com/locate/toxinvit     |                        |
| Analysis of the L | ocal Lymph Node Assay (LLNA) variability for assessing | CrossMar               |

# How concordant are multiple LLNA outcomes for a single chemical?

- ~78% for hazard
- ~62% for potency classification



# **LLNA Variability**





# **Comparison of LLNA and Human Data**

### Accuracy:

- 75% for Hazard (NS/S)
- 60% for Potency 3-class (NS, Weak/ Moderate, Strong/ Extreme)
- 47% for Potency 5-class (NS, Weak, Moderate, Strong, Extreme)



#### Provides a benchmark for comparison with new approaches

Basketter et al. 2014



#### **Key Events in the Skin Sensitization Process**



\*Illustration by D. Sailstad



# **OECD AOP for Skin Sensitization**



1



# **OECD AOP for Skin Sensitization**





# **Global Skin Sensitization Project**

- Objective: analysis of available non-animal approaches
  - OECD submitted case studies
- Collaboration with Cosmetics Europe
  - 128 substance dataset
  - LLNA and human data
  - Curation/generation of in vitro data
    - DPRA, KeratinoSens, hCLAT, U-SENS
    - PPRA, SENS-IS (underway)



Spectrum of 128 substances (largely cosmetic ingredients)

- Analyze five OECD-submitted defined approaches (i.e., code packages); open source and transparent (R, Python)
- Evaluate performance against the LLNA and human hazard/potency categories



#### In vitro assays

- Direct peptide reactivity assay
  - Assesses the ability of a substance to form a hapten-protein complex

#### KeratinoSens

 Assesses the ability of a substance to activate cytokines and induce cytoprotective genes in keratinocytes

#### – h-CLAT

 Assesses the ability of a substance to activate and mobilize dendritic cells in the skin



- Assesses protein reactivity of a test substance
- Uses two heptapeptides
  - One with cysteine (Cys) and one with lysine (Lys) as the reactive center
  - Incubate with test substance and measure disappearance of peptides with HPLC
  - Average depletion (Ave.Lys.Cys) > 6.38% = sensitizer
  - OECD Test Guideline 442C (2015)



#### **Measurements**

%Cys depletion %Lys depletion %Ave.Lys.Cys depletion

Graphic from EC JRC. 2012. Direct Peptide Reactivity (DPRA) Validation Study Report.

### **KeratinoSens**<sup>™</sup>



- Assesses the activation of the AKR1C2-ARE element, an indication of keratinocyte activation, in KeratinoSens cells (derived from HaCaT keratinocytes)
  - Caused by electrophilic agents, which tend to be skin sensitizers
  - Measures fold-induction of luciferase activity; induction >1.5-fold in 2/3 experiments = sensitizer
  - OECD Test Guideline 442D (2015)







- Measures 2 cell surface markers, CD86 and CD54, on dendritic cell surrogates (THP-1 cells)
  - Assesses the maturation process of dendritic cells as they transform from antigen processing cells to antigen presenting cells
  - CD86 relative fluorescence intensity (RFI) ≥150% and/or CD54 RFI ≥ 200% at any dose, in at least 2/3 experiments, then substance is a sensitizer
  - OECD Test Guideline 442E (2016)











Hoffman et al 2017, in preparation



- Most non-animal testing strategies evaluated so far perform better than the LLNA at predicting human skin sensitization hazard and potency
- Combining multiple in vitro assays and in silico methods or physico chemical properties increases the ability to predict sensitizers



#### Combining *in vitro* assays and other approaches increases the ability to predict sensitizers

| No.                | Model (Accuracy <sup>a</sup> )                                                                                                                                                                                                                                             | Sensitivity (%)     | Specificity (%) | Accuracy (%) |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|--------------|
| 1                  | DPRA + KeratinoSens + h-CLAT + Toolbox + Lys + Cys + Avg.Lys.Cys + 6 properties (95%)                                                                                                                                                                                      | 89                  | 91              | 89           |
| 5                  | KeratinoSens + h-CLAT + Toolbox + Avg.Lys.Cys + 6 properties (95%)                                                                                                                                                                                                         | 92                  | 79              | 88           |
| 7                  | h-CLAT + Toolbox + 6 properties (97%)                                                                                                                                                                                                                                      | 85 (84)             | 94 (48)         | 88 (75)      |
| 8                  | KeratinoSens + Toolbox + Avg.Lys.Cys + 6 properties (94%)                                                                                                                                                                                                                  | 84 (67)             | 91 (67)         | 86 (67       |
| 9                  | KeratinoSens + h-CLAT + Avg.Lys.Cys + 6 properties (92%)                                                                                                                                                                                                                   | 89                  | 73              | 84           |
| 10                 | h-CLAT + Toolbox + Avg.Lys.Cys + 6 properties (92%)                                                                                                                                                                                                                        | 90                  | 88              | 89           |
| 11                 | KeratinoSens + h-CLAT + Toolbox + 6 properties (92%)                                                                                                                                                                                                                       | 89                  | 79              | 86           |
| cell lir<br>box; S | ys.Cys, average depletion for lysine and cysteine; Cys, average % cysteine;<br>ne activation test; LOOCV, leave-one-out cross-validation; Lys, average % lys<br>WM, support vector machine.<br>age accuracy of the training and test sets for predicting the reference LLN | sine depletion; Too |                 |              |

(Individual assay compared to the LLNA)

From Strickland et al., J. Appl. Toxicol. 2016; 36: 1150-1162

# Expanding Coverage of Chemical Space

- Most chemicals used in the validation of non-animal test methods have been cosmetics ingredients
- NTP is supporting testing of other types of chemicals in three alternative test methods: DPRA, LuSens, hCLAT
  - Expanded chemical space includes: pesticides, agrochemical formulations, dermal excipients, personal care product ingredients, "challenge" chemicals
- Have compiled chemical nominations from multiple ICCVAM agencies
  - EPA: Office of Pesticides, Office of Pollution Prevention and Toxics, Office of Research and Development
  - Consumer Product Safety Commission
  - Food and Drug Administration
  - NTP

# Expanding Coverage of Chemical Space

- Total of 266 chemicals nominated
- NTP has procured 135 chemicals for initial testing phase (mostly nominations from the EPA)
- Testing began in late 2017
- Additional testing (~100 chemicals) to follow in mid-2018
- Coordinating with Dow to test formulations already assessed in DPRA and KeratinoSens<sup>™</sup> in the hCLAT assay

# Expanding Coverage of Chemical Space

- Combine with *in silico* data and physico chemical properties when available
- Evaluate the dataset using methods previously developed by NICEATM (Strickland et al 2016)
- Evaluate predictive performance of non-animal defined approaches submitted to OECD (Kleinstreuer et al. 2018) in comparison to LLNA data
- Characterize applicability domain of in vitro test methods and non-animal defined approaches
- Work with ICCVAM agencies to adopt non-animal defined approaches where appropriate



- Nicole Kleinstreuer, Warren Casey (NICEATM)
- Victor Johnson, Michelle Miller (Burleson Research Technologies)
- Bradley Collins (NTP Program Operations)
- David Allen, Judy Strickland, Dan Zang, Mike Paris, Eileen Phillips (ILS)
- Evisabel Craig, Anna Lowit (EPA/OPP)
- Joanna Matheson (CPSC)