

Tox21 Phase 3: High-Throughput Transcriptomics and the S1500+ Initiative

NTP Board of Scientific Counselors Meeting December 08, 2017

Richard S. Paules, Ph.D.

Acting Chief, Biomolecular Screening Branch
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

The Toxicology in the 21st Century ("Tox21") Federal Partnership

NTP Board of Scientific Counselors Meeting December 14, 2016

Richard S. Paules, Ph.D.

Acting Chief, Biomolecular Screening Branch Division of the National Toxicology Program National Institute of Environmental Health Sciences

NTP Tox21 Phase III: Improving on Biological Coverage and Human Relevance

The Assumption:

 Global "Omic" (Whole System) approaches can link genomic perturbations with alterations in biological processes that result in toxicity and/or disease

The Goal:

- A rapid and affordable quantitative High-Throughput Transcriptomic (HTT) measurement of expression levels of genes for large numbers of samples (chemicals x doses x times x cells/tissues)
 - 1.Low depth coverage, "whole transcriptome" targeted gene expression analysis of ~22k genes (EPA-led)
 - 2.Targeted gene expression analysis using a set of representative or "Sentinel" genes, S1500+, to determine pathway and network perturbations (NTP-led)

- Development of the S1500+ Gene Set
- Evaluation of Performance of the Human S1500+ Gene Set
- Evaluation of the S1500+ on the TempO-Seq HT-Transcriptomics (HTT) Platform
- HTT Proof of Concept Study with an In Vitro Human Liver Organotypic Model
- Future Directions

Tox21 S1500+ Gene Selection Workgroup Members

- Scott Auerbach, Biomolecular Screening Branch, DNTP, NIEHS
- Pierre Bushel, Biostatistics Branch, DIR, NIEHS
- Jennifer Collins, Exposure, Response & Technology Branch, DERT, NIEHS
- Agnes Forgacs, National Center for Computational Toxicology, US EPA
- David Gerhold, Genomic Toxicology Group, National Center for Advancing Translational Sciences (NCATS)
- Richard Judson, National Center for Computational Toxicology, US EPA
- Elizabeth Maull, Biomolecular Screening Branch, DNTP, NIEHS
- Deepak Mav, SciOme, Inc.
- Alex Merrick, Biomolecular Screening Branch, DNTP, NIEHS
- Rick Paules, Biomolecular Screening Branch, DNTP, NIEHS
- Ruchir Shah, SciOme, Inc.
- Dan Svoboda, SciOme, Inc.
- Donna Mendrick, National Center for Toxicological Research, US FDA
- Weida Tong, National Center for Toxicological Research, US FDA
- Rusty Thomas, National Center for Computational Toxicology, US EPA

Attributes of a Tox21 S1500+ Gene Set

- 1. Diversity: Capture the maximal expression variability and dynamics
- Co-Expression: Capture the Sentinel genes with maximal co-expression information to represent members of nodes or networks
- Maximal Pathway Coverage: Genes are included to ensure maximal biological pathway coverage

1500 "Sentinel" Genes Informatic Derived – \$1500

4. Inclusion of toxicity and disease related genes: Specific genes selected for their reported roles in toxicity-related and disease-related processes (Includes L1000 gene set being used in the NIH LINCS program)

Hybrid Informatic Derived + Nominated Genes - \$1500+

5. "Extrapolatability": This property refers to the ability to extrapolate or infer or impute with some accuracy the expression changes of unmeasured genes from those measured in this reduced set of sentinel genes

Mav et al. 2017. A hybrid gene selection approach to create targeted gene sets for Tox21 high-throughput transcriptomics. *PLoS One.* In Revision.

High Degree of Correlated Gene Expression in the Human Transcriptome

Dimension reduction plot

X-axis – the percentage of the total principal components (eigengenes); **Y-axis** – percentage of variability captured. The red line represents the expected relationship given statistically independent gene expression, whereas the blue curve shows the observed relationship.

Attributes of a Tox21 S1500+ Gene Set

5. "Extrapolatability": This property refers to the ability to extrapolate or infer or impute with some accuracy the expression changes of unmeasured genes from those measured in this reduced set of sentinel genes

Mav et al. 2017. A hybrid gene selection approach to create targeted gene sets for Tox21 high-throughput transcriptomics. *PLoS One.* In Revision.

Human S1500+ Gene Set Pathway Coverage

Molecular Signature DB Canonical Pathways Coverage

	Pathways Covered (Total 1320)	Mean Coverage (Proportion of Pathway Genes)	Median Coverage (Proportion of Pathway Genes)	Mean Multiplicity	
1500 data-driven gene list (after Steps 1-3)	659	0.12	0.08	7.73	
S1500 gene set (after Step 1-4)	1320	0.26	0.25	10.38	
\$1500+ (2739 genes)	1320	0.43	0.43	11.44	
Random 1500	541 (443, 695)	0.07 (0.05, 0.09)	0.07 (0.05,0.09)	5.88 (5.60, 6.19)	
Random 2739	(852)(759, 946)	0.13 (0.11, 0.15)	0.12 (0.11,0.14)	5.87 (5.66, 6.18)	
L1000	906	0.17	0.16	12.97	

Pathways covered are calculated relative to the 1320 canonical pathways (MSigDB genesets) in MSigDB version 4.0. The pathway level coverage is defined as fraction of genes from pathway that overlap selected gene set.

Mean and Median coverage values are derived from pathway level coverage of 1320 canonical pathways from MSigDB (v4.0).

The gene level multiplicity metric represents number of pathways a gene is part of. Mean multiplicity is computed using gene level multiplicity metrics across all selected genes.

For "Random 1500" and "Random 2739" gene sets parenthesized values represent mean and range (min, max) across 20 alternative randomizations.

Human S1500+ Pathway Coverage – NCATS BioPlanet

Hosts the universe of public, curated human pathways (~ 2000 Pathways)

 \sum_{CxoT}

From Ruili Huang, NCATS

- Development of the S1500+ Gene Set
- Evaluation of Performance of the Human S1500+ Gene Set
- Evaluation of the S1500+ on the TempO-Seq HT-Transcriptomics (HTT) Platform
- HTT Proof of Concept Study with an In Vitro Human Liver Organotypic Model
- Future Directions

Human S1500+ Gene Set Extrapolation Performance

Performance of Extrapolated Gene Sets Using an Independent GEO Test Set

	Pearson Correlation ^a	Concordance Rate ^b	Significance Overlap ^c	Mean Squared Error ^d
Gene Level Performanc	e (Fold Change Value	s)		
\$1500+ (2739 genes)	0.75	0.94	0.37	0.20
Random 2739	0.76 (0.75, 0.76)	0.93 (0.93, 0.93)	0.38 (0.37, 0.38)	0.22 (0.22, 0.22)
Pathway Level Performa	ance (GSEA Scores)			
\$1500+ (2739 genes)	0.87	0.90	0.60	0.05
Random 2739	0.78 (0.77, 0.79)	0.86 (0.86, 0.86)	0.44 (0.42, 0.46)	0.08 (0.08, 0.08)

Random values represent mean and range (min, max) across 20-fold cross validation.

^a Pearson correlations reflect agreement between extrapolated and measured values

^b Concordance rates reflect the agreement between the extrapolated and the measured data calculated as (TP + TN)/(TP+TN+FP+FN)

^c Significance overlap relays the proportion of genes/pathways having values (i.e. fold change or GSEA scores) in the top 1% in both the measured and extrapolated datasets

^d Mean squared error measures the average squared difference between the extrapolated and measured values

Human S1500+ Gene Set Extrapolated Performance

Pathway Level Performance on a Case Study

Follicular Lymphoma vs. Tonsillectomy - Concordance Venn Diagrams

All significantly enriched pathways were identified using enrichment score > 0.5 and Kolmogorov Smirnov p-value < 0.001 for this analysis.

Recall is the percentage of the observed up-/down-regulated Pathways (Obs-Up and Obs-Down) that were also correctly predicted as up-/down-regulated (Pred-Up/Down).

Precision is the percentage of the predicted up- and down-regulated Pathways that were observed as up- and down-regulated.

- Development of the S1500+ Gene Set
- Evaluation of Performance of the Human S1500+ Gene Set
- Evaluation of the S1500+ on the TempO-Seq HT-Transcriptomics (HTT) Platform
- HTT Proof of Concept Study with an In Vitro Human Liver Organotypic Model
- Future Directions

BioSpyder TempO-Seq™ Technology

RASL-Seq Based Assay

NextGen Sequencing: 300 x 10⁶ reads / lane (HiSeq 2500)

- · Detector Oligo Target Sequence Gene ID
- Sample Specific Index Sequence Sample ID
- NTP Target Average Read Count ~ 500 Reads / Gene
- S1500+ Gene Set ~ 200 samples / lane
- Whole Transcriptome (22K) ~ 30 samples / lane
- RNA-Seq ~ 10 samples / lane

Yeakley JM, et al. 2017. PLoS One. 12(5): e0178302.

BioSpyder TempO-Seq™ Technology

TempO-Seq Attenuation

Fold Attenuator	Expected Signal	Probe ID	Max fold	
Added		IL8_14324	10	
OX	100%	NAMPT_10869	4	
UX	100%	TTR_7397	4	
1X	50%	ALB_217		
21/	220/	CALR_943	3	
2X	33%	CXCL1_28308	3	
4X	25%	FN1_27231	3	
		ND6_4508	3	
9X	10%	CYP3A5_27090	1	
		FN1_2459		

20 Genes Attenuated in Human HepaRG Experiments

NAMPT_10869	4
TTR_7397	4
ALB_217	3
CALR_943	3
CXCL1_28308	3
FN1_27231	3
ND6_4508	3
CYP3A5_27090	2
FN1_2459	2
GDF15_18329	2
HP_3085	2
IFITM3_17816	2
MT1G_26225	2
MT2A_4334	2
NAMPT_28431	2
PGK1_5094	2
PPIA_27705	2
SAT1_6103	2
SERPINE1_6253	2
	TTR_7397 ALB_217 CALR_943 CXCL1_28308 FN1_27231 ND6_4508 CYP3A5_27090 FN1_2459 GDF15_18329 HP_3085 IFITM3_17816 MT1G_26225 MT2A_4334 NAMPT_28431 PGK1_5094 PPIA_27705 SAT1_6103

TempO-Seq Attenuation

In this example, by adding attenuator at 2 times the amount of functional detector, the expected reads for an RNA should decrease by 3, due to competitive inhibition.

TempO-Seq Platform Evaluation with Rat SEQC Samples

DrugMatrix Rat Liver RNA Samples

 Total of 105 RNA samples from livers of rats treated with 27 chemicals with 7 Modes of Action (MOAs) for technology evaluation

Gene Level Performance

Measured Genes Only: Rat "S1500+ beta" - ~ 2300 genes

Extrapolated Genes Only: Rat Transcriptome - ~ 15,000 genes

Stat	Pearson Threshold Correlation		Significance MSE Overlap		Sensitivity	Specificity	Concordance Rate	
Foldchange	2	0.8314	0.3641	0.6875	0.6785	0.9370	0.8857	
Nominal. Value	0.05	0.7477	0.0192	0.2270	0.5270	0.0044	0.7449	
FDR.Broad (mean)	0.1	0.7242	0.1063	0.5231	0.6000	0.9814	0.9789	
Global.Pvalue	0.05	0.8133	0.7095	0.6875	0.8114	0.7792	0.7873	
Connection	0.5	0.9799	0.0033	0.7500	0.8795	0.9776	0.9544	
Foldchange (2	0.6156	0.3562	0.4167	0.2220	0.9876	0.9094	
Nominal.Fvalue	0.05	0.0055	0.9740	0.1743	0.4971	0.7094	0.0819	
FDR.Broad (mean	0.1	0.5813	0.1011	0.3726	0.1643	0.9968	0.9953	
Global.Pvalue	0.05	0.6588	0.5538	0.4167	0.3950	0.9358	0.8622	
Connection	0.5	0.9625	0.0055	0.8333	0.9773	0.9121	0.9202	

Gene vs. Pathway Level Performance

All Genes = Measured + Extrapolated Rat genes

		Pearson		Significance			Concordance
Stat	Threshold	Correlation	MSE	Overlap	Sensitivity	Specificity	Rate
			Cono	Level			
Foldchange	2	0.6922	0.3578	0.4992	0.3675	0.9787	0.9048
Nominal.Pvalue	11700	0.6373	0.9056	0.1841	0.5040	0.7899	0 6942
FDR.Broad (mean)	0.1	0.6170	0.1021	0.4258	0.3662	0.9938	0.9921
Global.Pvalue	0.05	0.7052	0.5840	0.4992	0.5232	0.9088	0.8477
Connection	0.5	0.9709	0.0041	0.8889	0.9796	0.9238	0.9316
			Pathwa	y Level			
ES	0.5	0.6069	0.1415	0.5556	0,6625	0.8063	0.7610
NES (2	0.7108	0.8612	0.5815	0.5840	0.9887	0.9814
Nominal.Pvalue	0.05	0.8094	0.4232	0.5940	0.0957	0.8909	0.0502
FDR.Broad (mean)	0.1	0.8232	0.1442	0.5795	0.7044	0.9471	0.9303
Global.Pvalue	0.05	0.8198	0.5277	0.5815	0.6722	0.8897	0.8539
Connection	0.5	0.9355	0.0121	0.8056	1.0000	0.9257	0.9373

ES = Enrichment Score

NES = Normalized Enrichment Score

- Development of the S1500+ Gene Set
- Evaluation of Performance of the Human S1500+ Gene Set
- Evaluation of the S1500+ on the TempO-Seq HT-Transcriptomics (HTT) Platform
- HTT Proof of Concept Study with an In Vitro Human Liver Organotypic Model
- Future Directions

HT Transcriptomics - Initial Human In Vitro Model System

Steve Ferguson & Sreeni Ramaiahgari, NTP

Ramaiahgari S et al. 2017. From the Cover: Three-dimensional (3D) HepaRG Spheroid Model with Physiologically-Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. *Toxicol. Sci.*, 159(1): 124-136.

HT Transcriptomics – Initial Study

Steve Ferguson & Sreeni Ramaiahgari, NTP

- HepaRG in vitro Model Treatments 384 well format
 - 2D proliferating HepaRG (moderate metabolism)
 - 2D HepaRG differentiated, confluent (induced metabolism)
 - 3D HepaRG (robust metabolism) * data yet to come
 - 24 Compounds
 - 10 Concentration levels, each with triplicate wells
 - 3 Independent runs (different days)
 - 96 hr treatment period with dosing on Day 1 and Day 3 (media changes)
 - Endpoints: morphology, LDH, ROS, metabolomics, targeted P450 metabolism
 - Lysis for gene expression analysis using the Tox21 human S1500+ gene set
 - ~9000 samples analyzed by HTT, generating ~ 25 Million data points

S1500+ HT Transcriptomics – Gene Read Counts

Trey Saddler, NTP

Genes

Transcripts Per Million

Compounds / Samples

S1500+ HT Transcriptomics – Gene Fold Change

Sreeni Ramaiahgari, NTP

Compounds / Samples

Genes Genes

S1500+ HT Transcriptomics – Pathways

Sreeni Ramaiahgari, NTP

Genes

High-Throughput Transcriptomics (HTT) at NTP

Moving Tox21 towards Quantitative Systems Toxicology

Hypothesis

 Transcriptome profiling of in vitro treated human cells can provide an approximation of human in vivo responses to chemical exposures

Goal

 To evaluate High-Throughput Transcriptomic analysis of in vitro cell models for providing Bench Mark Dose (BMD) information relevant to human BMD values and begin to address best practices.

Signature-level Genomic Benchmark Dose

BMDExpress – Rusty Thomas, Hamner, et al.

BMDExpress 2.0 - Scott Auerbach, NTP, et al.

Aflatoxin B1 vs. Controls (2D Confluent) BMDs

Accumulation of significantly affected Genes with their BMD values Accumulation of significantly affected Pathways with their BMD values

CP-DB Pathway BMDs

Each dot is a gene or pathway BMD value. The BMDs from a given treatment are linked by a line. The BMDs are ordered from most "potent" to least "potent". The plot shows the accumulation from rank 1 to the total number of significantly affected genes or pathways. The most "potent" perturbed gene or pathway BMDs are on the left and the least "potent" are on the right

Steve Ferguson, NTP – Gene Level Median BMD Values

Rifampicin Activation of PXR Signaling via CYP3A4 Induction

Steve Ferguson & Nisha Sipes, NTP – Gene Level Median BMD Values

Case Study Comparison of Drug Analogues

Steve Ferguson, NTP – Gene Level Median BMD Values

Trovafloxacin vs. Levofloxacin

- Development of the S1500+ Gene Set
- Evaluation of Performance of the Human S1500+ Gene Set
- Evaluation of the S1500+ on the TempO-Seq HT-Transcriptomics (HTT) Platform
- HTT Proof of Concept Study with an In Vitro Human Liver Organotypic Model
- Future Directions

NTP HT Transcriptomics QC Workflow (under construction)

NTP Tox21 HT-Transcriptomics

Moving Forward

- S1500+ development for **human** (complete), rat & mouse (near completion), zebrafish (initiated)
- HTT screening for prioritization BioSimilarity, Biological Read-Across
 - e.g. Perfluorinated Compounds (PFOA, PFOS), Botanicals, Polycyclic Aromatic Compounds, Flame Retardants, etc.
- Integrate High Content Imaging with qHTS & HT-T Phenotypic Anchoring
- Integrate Metabolomics data from NTP Labs with HT-T data PBPK, etc.
- Application to biomaterial from NTP rat and mouse studies
 - Acute (5 Day) Rat Transcriptomics Studies
 - Diversity Outbred mouse models for screening for Genetic Variation in responses to chemical exposures
 - Rat and Mouse Archived FFPE material

Tox21: A Collaboration of Many...

NTP BSB

Scott Auerbach

Steve Ferguson

Sreenivasa Ramaiahgari

Nisha Sipes

Alex Merrick

Kristine Witt

Stephanie Smith-Roe

Alison Harrill

Julie Foley

Jui-Hua Hsieh

Fred Parham

Trey Saddler

Ray Tice (Retired)

BioSpyder Team

NTP/NIEHS

Mike DeVito

Warren Casey

Elizabeth Maull

Nicole Kleinstreuer

Suramya Waidyanatha

Windy Boyd

Mamta Behl

Brad Collins

Jennifer Fostel

Keith Shockley

Grace Kissling

John Bucher

Linda Birnbaum

SciOme

Deepak Mav Ruchir Shah

Dan Svoboda

Tox21 Colleagues NCATS

Anton Simeonov

Chris Austin

Menghang Xia

Ruili Huang

Dave Gerhold

Anna Rossoshek

US EPA

Rusty Thomas

Kevin Crofton

Richard Judson

Ann Richard

Bob Kavlock

US FDA

Suzy Fitzpatrick

Dan Acosta

Donna Mendrick

Weida Tong

Thank you!

Questions?

