ECHA Workshop: Accelerating the Pace of Chemical Risk Assessment John R. Bucher, PhD, DABT NTP Associate Director National Institute of Environmental Health Sciences NTP Board of Scientific Counselors December 8, 2017 - A*STAR (Singapore) - US Consumer Product Safety Commission - California EPA - US Environmental Protection Agency (EPA)* - European Chemical Agency (ECHA)* - European Food Safety Agency - National Industrial Chemicals Notification and Assessment Scheme (NICNAS [Australia]) - National Institute for the Industrial Environment and Risks (INERIS [France]) - Joint Research Council (EU) - Health Canada - Safety and Health Technology Center (SAHTECH [Taiwan]) - National Institute for Public Health and the Environment (RIVM [Netherlands]) - Japanese Ministry of Health, Welfare and the Environment - Korea Ministry of the Environment - US National Toxicology Program - Organisation for Economic Co-operation and Development (OECD) #### Why- Immediate drivers - TSCA reform act - REACH experience - Purpose - To "make the science of new approach methodologies (NAMS) work for common regulatory challenges" - "To bring together international regulators to discuss progress and barriers in applying new tools to prioritization, screening, and quantitative risk assessment of differing levels of complexity." - When and how- - Workshops to develop case studies - September 14-15, 2016 EPA Washington, DC - October 10-11, 2017 ECHA Helsinki, Finland - Periodic teleconferences ## **Initial proposed case studies** #### September 2016 - Using NAMS to address data poor, high exposure chemicals (ECHA) - Use NAMS to improve chemical categories and biological activity groupings (EPA) - In vitro bioactivity as a conservative PoD (EPA) - New tools to predict exposures from various chemical structure and use categories (EPA) - Develop multimedia exposure models to improve Pb mitigation efforts (EPA) - Develop a range of validated NAMS to identify endocrine disruptors (France) - Application of NAMS to perfluoroalkylated substances (EPA) - Amphibian skin absorption models (EFSA) - Develop reference doses from endocrine disruptors from in vitro assays (Korea) - Medaka extended one generation reproduction assay (Japan) #### Initial proposed case studies #### September 2016 - Using NAMS to address data poor, high exposure chemicals (ECHA) - Use NAMS to improve chemical categories and biological activity groupings (EPA) - In vitro bioactivity as a conservative PoD (EPA) - New tools to predict exposures from various chemical structure and use categories (EPA) - Develop multimedia exposure models to improve Pb mitigation efforts (EPA) - Develop a range of validated NAMS to identify endocrine disruptors (France) - Application of NAMS to perfluoroalkylated substances (EPA) - Amphibian skin absorption models (EFSA) - Develop reference doses from endocrine disruptors from in vitro assays (Korea) - Medaka extended one generation reproduction assay (Japan) The PoD for changes in <u>hepatic</u> gene expression is predictive of the PoD for biological effects in any organ in any length study. - Administer chemical to male SD rats by oral gavage once per day for 4-5 days at 6 to 8 levels covering a wide dose range, from MTD downward to predicted NOEL - Remove liver on day 5-6 for transcriptomic assessment- microarray or RNA seq with S1500+ gene set - Load gene expression files and process according to preset criteria through BMDExpress2.0 - Perform benchmark dose modeling for both gene level and "pathway" level hepatic transcriptome changes - Compare BMDs for gene or pathway expression changes with BMDs for any traditional toxicological response - Plots either active genes or "pathways" in an ascending accumulative manner based on increasing median BMD or BMDL - Provides view of most to least dose sensitive gene or pathway - Can identify genes or pathways by mouse click ## p-Toluidine, N,N-dimethyl-p-toluidine 5-day genomics study - N,N-dimethyl-p-toluidine (DNPT) - Hepatocellular tumors and liver toxicity in rats and mice - Nasal transitional epithelial adenoma/carcinoma and nasal toxicity in rats - p-Toluidine (p-Tol) - Hepatocellular tumors in mice and liver toxicity in rats and mice - Methemoglobinemia - Both chemicals through a postulated p-methyl phenyl hydroxylamine - Compare transcriptomic profiles Arch Toxicol DOI 10.1007/s00204-016-1831-7 #### TOXICOGENOMICS Hepatic transcriptomic alterations for N,N-dimethyl-p-toluidine (DMPT) and p-toluidine after 5-day exposure in rats ## DMPT and p-toluidine 5-day genomics study design Model: F344/N Rat (male) Route: Oral (corn oil gavage) Dosing regiment: 5 repeated doses, euthanize 24 hrs after last dose - Dose groups: 6 - 0, 1, 6, 20, 60, 120 mg/kg/day - Group size: 5 - Organ for transcriptomics: Liver - Other endpoints: Clinical observations, body and organ weights, clinical pathology NH₂ ## **DMPT GO BP and gene BMD values** #### "Active" GO BP Terms #### Genes ## DMPT vs p-toluidine #### "Active" GO BP Terms #### Genes BMD Median (mg/kg/day) - What kinds of substances do we miss? Why? - Do kinetic adjustments adequately accommodate bio-accumulative substances? - Non toxic substances will produce gene expression changes- Do we care? - Can this approach be used for more than prioritization? - Can this bridge to in vitro transcriptomic-based risk assessment? #### **APCRA** case studies - Using NAMS to address data poor, high exposure chemicals (ECHA) - Use NAMS to improve chemical categories and biological activity groupings (EPA) - In vitro bioactivity as a conservative PoD (EPA) - New tools to predict exposures from various chemical structure and use categories (EPA) - Develop multimedia exposure models to improve Pb mitigation efforts (EPA) - Develop a range of validated NAMS to identify endocrine disruptors (France) - Application of NAMS to perfluoroalkylated substances (EPA) - Amphibian skin absorption models (EFSA) - Develop reference doses from endocrine disruptors from in vitro assays (Korea) - Medaka extended one generation reproduction assay (Japan) #### Examining the utility of in vitro bioactivity as a conservative point of departure Use of high-throughput, *in vitro* bioactivity data in setting a conservative point-of-departure (POD) will require **greater confidence** that *in vitro* bioactivity data, in concert with high-throughput toxicokinetic information and reverse dosimetry, can be used to estimate administered dose equivalents (ADEs) at or below the PODs derived from traditional animal studies. Partner Agencies EPA, ECHA, EFSA, A*STAR, Health Canada, NTP #### Examining the utility of in vitro bioactivity as a conservative point of departure | Partner | Primary roles/contributions | |----------------------------------|---| | EPA-ORD [NCCT,
NCEA, and CSS] | Lead/organizing partner Contributed high-throughput toxicokinetic information, high-throughput screening information (ToxCast/Tox21) and their corresponding administered dose equivalents, point-of-departure information from in vivo studies. Provided chemicals to A*STAR for additional screening in high-throughput assays. | | ECHA | • Compiling publicly available point-of-departure information from an IUCLID database of chemical registration information, with an emphasis on sharing information for chemicals with available high-throughput toxicokinetic information. | | EFSA | • Compiling point-of-departure and exposure information from registration dossiers with an emphasizing information for chemicals with available high-throughput toxicokinetic information. | | A*STAR | • Initiated bioactivity screen for 64 prioritized ToxCast chemicals in three organ-relevant (liver, kidney and lung) in vitro models. | | Health Canada | • Compiling exposure and point-of-departure information emphasizing information for chemicals with available high-throughput toxicokinetic information. | #### **Integrated APCRA case studies** #### Study flow (in development) - Identify ~90 REACH-registered, "in vivo data-poor" chemicals with exposure information - Identify ~40 "in vivo data-poor" chemicals with high throughput toxicokinetic data available - Identify ~ 100 chemicals having 90-day or other repeated dose in vivo toxicity studies available with high throughput toxicokinetic data available - 35 chemicals with less conservative PODnam estimates, PODtraditional:PODnam ratio < 1; - 35 chemicals with a moderate PODtraditional:PODnam ratio between 1 and 2 (assumed moderate level of protection) - 35 chemicals with an overly conservative PODnam estimates, PODtraditional:PODnam ratio > 2 - Select ~10 chemicals for in depth in vivo assessments <u>by NTP</u> - 90 day toxicity studies with toxicokinetic measurements - Sequential assessments of transcriptomics in selected organs ## Thank you! https://niehs.nih.gov ## **Ongoing 5-day studies** Furan Thujone Bisphenol AF Diethylhexyl phthalate Fenofibrate Coumarin Acrylamide Bromodichloroacetic acid Perfluorooctanoic acid Tris(chloropropyl) phosphate Hexachlorobenzene Ethinyl estradiol Triclosan Tetrabromobisphenol A Ginseng Pentabromodiphenyl ether mixture Pulegone Milk thistle extract • 3,3',4,4'- Tetrachloroazobenzene Methyleugenol ## Ongoing 5-day studies- data under review/reporting Decabromodiphenyl ether 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate 2,2',4,4'-tetrabromodiphenyl ether Hexabromocyclododecane Bis(2ethylhexyl) tetrabromophthalate Firemaster 680 Tetrabromobisphenol A bis(2,3-dibromopropyl ether) Hexachlorocyclopentadienyl-dibromocyclooctane Triphenyl phosphate Decabromodiphenylethane Isopropylated phenol phosphate 2-Ethylhexyl diphenyl phosphate Tricresyl phosphate Tert-butylphenyl diphenyl phosphate Isodecyl diphenyl phosphate Ginkgo biloba extracts (5)