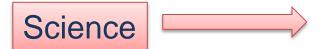


Translating Science to Support Decisions Overview

Assessing Health Effects Evidence

Andrew Rooney, PhD

Office of Health Assessment and Translation
Division of the National Toxicology Program
National Institute of Environmental Health Sciences

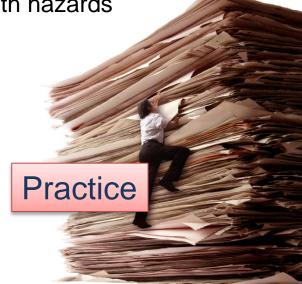

NTP Board of Scientific Counselors Meeting December 12, 2018

Translating Science to Support Decisions

Regulatory Toxicology

Regulation/Policy

Literature analysis


Well established procedures to identify human health hazards

 Developing new approaches to better inform evidence-based research decisions

Modern Toxicology

Innovation

Translating Science to Support Decisions

Regulatory Toxicology

Regulation/Policy

Literature analysis

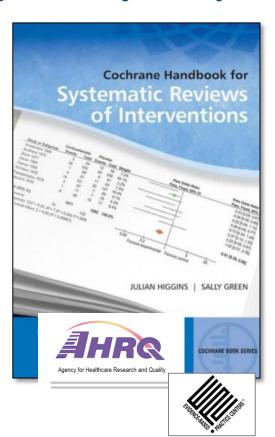
Well established procedures to identify human health hazards

 Developing new approaches to better inform evidence-based research decisions

Challenges

- Maintain transparent, critical evaluation of the evidence
- Find and translate "evidence" despite volume of research
 - 3 science articles published per minute
 - 2 million+ research publications per year

Systematic Review Methods


Critical Evaluation with Increased Transparency and Objectivity

Systematic Review

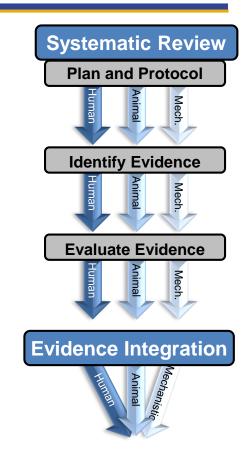
 Predefined, multistep process to identify, select, critically assess, and synthesize evidence to answer a specific research question

Established for Clinical Questions

- Cochrane Collaboration, Agency for Healthcare Research and Quality (AHRQ) Evidence-based practice centers, etc.
- Address healthcare interventions

Systematic Reviews in Environmental Health

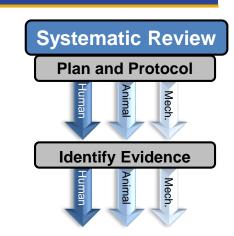
- NTP Leadership in Development and Conduct of Systematic Review Approaches
 - Office of the Report of Carcinogens
 - Office of Health Assessment and Translation
- What's Different?
 - Needs to address the breadth of relevant data
 - Includes approach to reach hazard identification conclusions
 - Requires procedure to integrate evidence streams



Systematic Review

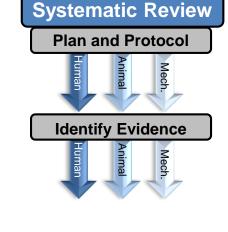
- Plan: Problem formulation develops specific research question Protocol outlines process
- Identify Evidence: Conduct comprehensive literature search Select relevant studies and extract data
- Evaluate Evidence: Assess individual study quality/risk of bias Complete data analysis or meta-analysis

Evidence Integration


Develop hazard conclusions by conclusions by integrating evidence from human and experimental animal studies with consideration of the degree of support from mechanistic data

Tools of the Trade

- Identify the Evidence
 - Search
 - Strategy: Informationist + Subject experts
 - Searching multiple databases: PubMed, Embase, etc.

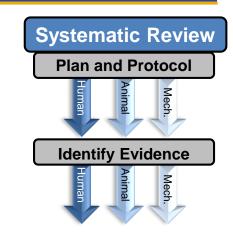


Tools of the Trade

- Identify the Evidence
 - Screen
 - Software platforms
 - Active learning algorithms

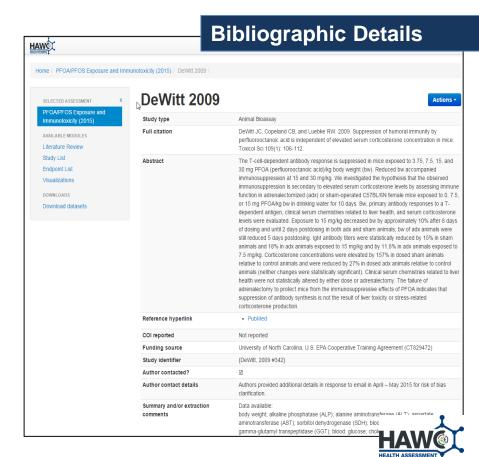
₩ DistillerSR

2 independent reviewers



Tools of the Trade

- Identify the Evidence
 - Data Extraction
 - Software platforms
 - Capture / extract / "code"
 - Study design
 - Results


Tools of the Trade

- Identify the Evidence
 - Data Extraction
 - Software platforms
 - Capture / extract / "code"
 - Study design
 - Results

Tools of the Trade

- Identify the Evidence
 - Data Extraction
 - Software platforms
 - Capture / extract / "code"
 - Study design
 - Results

Experimental Methods

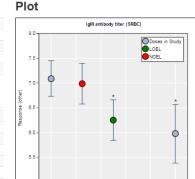
Available animal bioassay experiments

Name	Туре	Description
Sham-operated	Short-term (1-30 days)	C57BL/6N female mice (6–7 weeks of age) were purchased from Charles River Laboratories (Raleigh, NC). Half of the mice were adx, and half received sham adrenalectomy operations (sham); surgeries were performed at Charles River Laboratories prior to arrival at the U.S. EPA. Once at the U.S. EPA's animal facilities (accredited by the Association for Assessment and Accreditation of Laboratory Animal Care), animals were housed in groups of six in polycarbonate cages with hardwood chip bedding (Beta chip; Northeaster Products, Warrensburg, NY). They were provided a 12-h light.dark cycle (light, 0600–1800 h; dark, 1800–0600 h), maintained at 22.3 ± 1.1 °C and 50 ± 10% humidity, and given ad libitum access to both food (5P00 Prolab RMH 3000; PMI Nutrition International, Richmond, IN) and water. Animals were acclimated for 1 day before dosing began. All procedures employed in this study were approved in advance by the Institutional Animal Care and Use Committee of the National Health and Environmental Effects Research Laboratory, U.S. EPA.

Adrenalectomized Short-term (1-30 C57BL/6N female mice (6-7 weeks of age) were purchased from Charles River Laboratories (Raleigh, NC), Half of the mice were adx, and half received sham adrenalectomy operations (sham); surgeries were performed at Charles River Laboratories prior to arrival at the U.S. EPA. Once at the U.S. EPA's animal facilities (accredited by the Association for Assessment and Accreditation of Laboratory Animal Care), animals were housed in groups of six in polycarbonate cages with hardwood chip bedding (Beta chip; Northeaster Products, Warrensburg, NY). They were provided a 12-h light:dark cycle (light, 0600-1800 h; dark, 1800-0600 h), maintained at 22.3 ± 1.1₁ C and 50 ± 10% humidity, and given ad libitum access to both food (5P00 Prolab RMH 3000; PMI Nutrition International, Richmond, IN) and water. Animals were acclimated for 1 day before dosing began. All procedures employed in this study were approved in advance by the Institutional Animal Care and Use Committee of the National Health and Environmental Effects Research Laboratory, U.S. EPA.

Tools of the Trade

- Identify the Evidence
 - Data Extraction
 - Software platforms
 - Capture / extract / "code"
 - Study design
 - Results

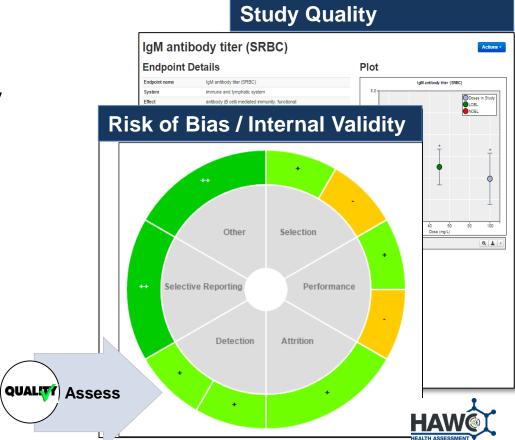


IgM antibody titer (SRBC) **Endpoint Details** Endpoint name IgM antibody titer (SRBC) System immune and lymphatic system antibody (B cell) mediated immunity; functional Diagnostic description Observation time 15 days Additional tags antibody response immune system Data reported? Data extracted? Values estimated? Location in literature Figure 3 25 mg/L NOFI LOEL Monotonicity yes, visual appearance of monotonicity but no trend Statistical test description ANOVA followed by Tukey's test and t-test Trend result not reported Power notes "underpowered to detect a change of 10% control" (sample size is 50% to <75% of recommended) [calculated n=12; mean required-N calculation from all dose-groups] "appears to be adequately powered" (sample size met) to detect a change of 20% control [calculated n=4; mean required-N calculation from all dose-groups] General notes/methodology endpoint name in study: SRBC-specific IgM antibody titers Dataset Dose (ma/L)≯ Number of Animals Response (other) Standard Error 6 7.09 0.14 6 6.99 0.16 6.25 0.16 * NOFL (No Observed Effect Level)

Study Results

0 1 - 0

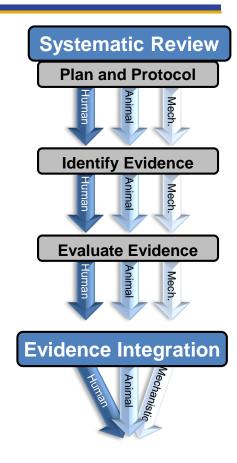
Dose (mg/L)


Q ±

Significantly different from control (p < 0.05)</p> I OFI /I owest Observed Effect Level

Tools of the Trade

- Evaluate the Evidence
 - Assess Individual Study Quality


Tools of the Trade

- Tools support transparent process
- Tools provide access to the evidence to support decision making

- Found
- Filtered
- Assessed
- Categorized
- Translated
- Synthesized

Systematic Reviews of Health Effects Evidence

Translating Evidence into Conclusions that Support Policy

Regulatory Toxicology

Regulation/Policy

Occupational Exposure to Cancer Chemotherapy Agents

• Conclusions on: Adverse outcomes (genetic toxicity and spontaneous abortions)

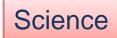
Sarin

• DRAFT Conclusions on: Long-term neurological effects following acute exposure

Traffic-related Air Pollution

• DRAFT Conclusions on: Gestational hypertension

Fluoride


Developing Conclusions on: Potential developmental neurotoxicity

Support of National Academy of Sciences (NAS) Activities

Translating Evidence into Conclusions that Support Policy

Regulatory Toxicology

Regulation/Policy

- **2019:** Evidence Integration in Chemical Assessments: Challenges Faced in Developing and Communicating Human Health Effect Conclusions **Andrew Rooney**
- **2018:** Strategies And Tools For Conducting Systematic Reviews of Mechanistic Data to Support Chemical Assessments **Andrew Rooney, Amy Wang**
- **2017:** Gulf War and Health, Volume 11: Generational Health Effects of Serving in the Gulf War (2017) **Vickie Walker**
- **2017:** NTP systematic review of "Mountaintop Removal Mining: Impacts on Health in the Surrounding Community" **Abee Boyles (DERT, formerly NTP)**
- **2015-2017:** Application of Systematic Review Methods in an Overall Strategy for Evaluating Low-Dose Toxicity from Endocrine Active Chemicals" **Andrew Rooney**

Focused Questions

- Systematic review approaches are very effective at transparently evaluating evidence on groups of studies addressing the same or similar endpoints
- Example Objective: To develop NTP hazard identification conclusions on the association between exposure to PFOA and immunotoxicity
 - All measures of immunotoxicity

 Immunosuppression

 antibody response



Focused Questions for a Systematic Review

- Systematic review approaches are very effective at transparently evaluating evidence on groups of studies addressing the same or similar endpoints
- Example Objective: To develop NTP hazard identification conclusions on the association between exposure to PFOA and immunotoxicity
 - All measures of immunotoxicity

 Immunosuppression

 antibody response

Experimental Animal Data

- antibodies to T-cell antigens
- anti-SRBC IgM
- anti-SRBC IgG

Human Data

- antibodies to vaccines
- anti-tetanus IgM
- anti-rubella IgM

In vitro and Mechanistic Data

- in vitro IqM
- mechanisms of antibody production/response

Systematic Review is Not Always the Answer

- What are they best at?
 - Reaching conclusions
 - Addressing narrowly focused questions
- Challenges
 - Resource intensive
 - Process takes time
 - Addressing broad questions
 - Multiple exposures
 - Multiple health outcomes

Systematic Review Is Not Always the Answer

- Active debate and methods development in the field
 - Society of Toxicology Workshop March 14, 2019
 - Potential Alternatives to Systematic Reviews (Chair: Brandy Beverly)
 - Systematic Mapping as a Tool for Regulatory Risk Assessment (T. Harrison)
 - Rigor and Resources for Systematic Reviews in Toxicology (D. Wikoff)
 - Illustrating Fit for Purpose in Systematic Evidence Maps (Vickie Walker)
 - Using Scoping Reviews to Guide Systematic Reviews and Future Research (Carol Kwiatkowski)

Translating Science to Support Decisions

Regulatory Toxicology

Regulation/Policy

Systematic Review

Literature analysis

Well established procedures to identify human health hazards

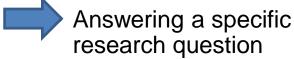
Developing new approaches to better inform evidence-based research decisions

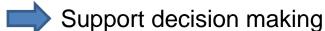
Systematic Evidence Mapping

Practice

Modern Toxicology

Innovation




Fit for Purpose Evaluation Format

Systematic Review

 Predefined, multistep process to identify, select, critically assess, and synthesize evidence to answer a specific research question

– Goals:

Hazard conclusions

Conclusions to Inform Policy Decisions

Occupational Exposure to Cancer Chemotherapy Agents

Conclusions on: Genetic toxicity and spontaneous abortions

Sarin

 DRAFT Conclusions on: Long-term neurological effects following acute exposure

Traffic-related Air Pollution

 DRAFT Conclusions on: Gestational hypertension

Fluoride

Developing Conclusions on: Potential developmental neurotoxicity

Fit for Purpose Evaluation Format

Systematic Review

 Predefined, multistep process to identify, select, critically assess, and synthesize evidence to answer a specific research question

– Goals:

Answering a specific research question

Support decision making

Hazard, evidence conclusions

Scoping Review and Evidence Mapping

 Summary and categorization of literature prepared to rapidly map the key concepts, types of evidence, and gaps in research by systematically searching, selecting and presenting the evidence

– Goals:

Characterize state of knowledge on a topic or question

Support decision making

Interactive, reader-driven

Identify data "pockets" and gaps

Systematic Reviews of Health Effects Evidence


Developing New Approaches to Better Inform Evidence-based Research Decisions

Modern Toxicology

Innovation -

Practice

Evidence Mapping

Systematic Reviews of Health Effects Evidence

Developing New Approaches to Better Inform Evidence-based Research Decisions

Modern Toxicology

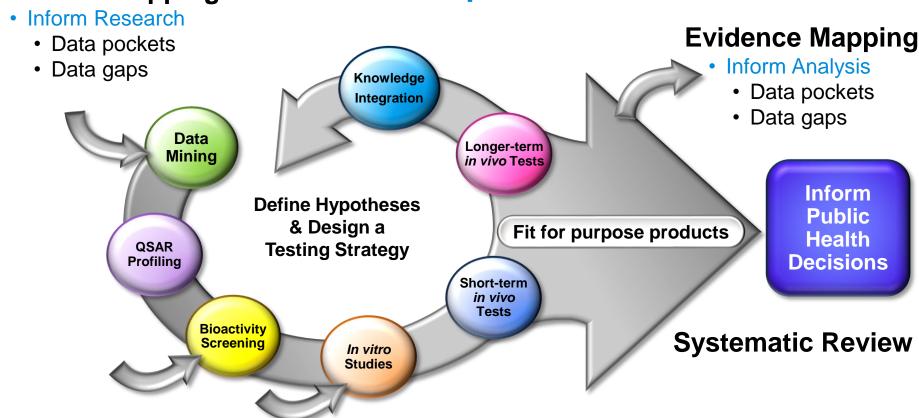
Practice

Evidence Mapping to Inform PROBLEM FORMULATION

• Environmental Exposures and Inflammation-based Atherosclerosis

Evidence Mapping to inform HEALTH EFFECT SCOPING

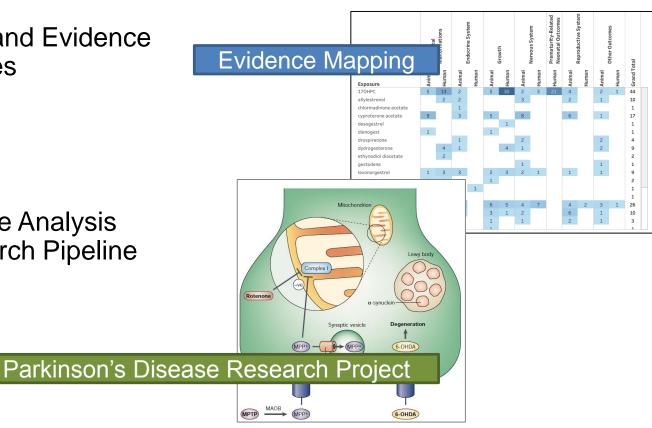
Prenatal Exposure to Progestogens


Evidence Mapping to support STATE OF THE SCIENCE

Transgenerational Inheritance
 Walker et al. 2018 An evidence map and state-of-the-science evaluation. Environment International 115: 48-69.

DNTP Translational Toxicology Pipeline Plan

Evidence Mapping Fit for Purpose Literature Evaluations



Translating Science to Support Decisions

New Approaches to Inform Evidence-Based Research Decisions

- Literature Scoping and Evidence Mapping Approaches
 - Vickie Walker

- Integrating Literature Analysis into the NTP Research Pipeline
 - Windy Boyd

Thank you

Questions?